1
|
Schenck CH. REM sleep behaviour disorder (RBD): Personal perspectives and research priorities. J Sleep Res 2025; 34:e14228. [PMID: 38782758 DOI: 10.1111/jsr.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
The formal identification and naming of rapid eye movement (REM) sleep behaviour disorder (RBD) in 1985-1987 is described; the historical background of RBD from 1966 to 1985 is briefly discussed; and RBD milestones are presented. Current knowledge on RBD is identified with reference to recent comprehensive reviews, allowing for a focus on research priorities for RBD: factors and predictors of neurodegenerative phenoconversion from isolated RBD and patient enrolment in neuroprotective trials; isolated RBD clinical research cohorts; epidemiology of RBD; traumatic brain injury, post-traumatic stress disorder, RBD and neurodegeneration; depression, RBD and synucleinopathy; evolution of prodromal RBD to neurodegeneration; gut microbiome dysbiosis and colonic synuclein histopathology in isolated RBD; other alpha-synuclein research in isolated RBD; narcolepsy-RBD; dreams and nightmares in RBD; phasic REM sleep in isolated RBD; RBD, periodic limb movements, periodic limb movement disorder pseudo-RBD; other neurophysiology research in RBD; cardiac scintigraphy (123I-MIBG) in isolated RBD; brain magnetic resonance imaging biomarkers in isolated RBD; microRNAs as biomarkers in isolated RBD; actigraphic, other automated digital monitoring and machine learning research in RBD; prognostic counselling and ethical considerations in isolated RBD; and REM sleep basic science research. RBD research is flourishing, and is strategically situated at an ever-expanding crossroads of clinical (sleep) medicine, neurology, psychiatry and neuroscience.
Collapse
Affiliation(s)
- Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, Department of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Arnaldi D, Mattioli P, Orso B, Massa F, Pardini M, Morbelli S, Nobili F, Figorilli M, Casaglia E, Mulas M, Terzaghi M, Capriglia E, Malomo G, Solbiati M, Antelmi E, Pizza F, Biscarini F, Puligheddu M, Plazzi G. The Many Faces of REM Sleep Behavior Disorder. Providing Evidence for a New Lexicon. Eur J Neurol 2025; 32:e70169. [PMID: 40259606 PMCID: PMC12011991 DOI: 10.1111/ene.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 03/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND People with idiopathic/isolated REM sleep behavior disorder (iRBD) are highly heterogeneous, showing mild motor, cognitive, and dysautonomia symptoms. The aim of this study is to unveil the clinical heterogeneity of iRBD with a specific reference to overlapping features with prodromal Parkinson's disease (pPD) and prodromal dementia with Lewy bodies (pDLB) labels. METHODS People with a polysomnography-confirmed diagnosis of iRBD were enrolled and followed over time. At baseline, pPD and pDLB criteria were assessed. RESULTS Among the 285 iRBD people (68.2 ± 7.6 years, 81% males), due to additional signs or symptoms, 49.8% fulfilled pPD criteria only, 5.6% pDLB criteria only, and 14.4% subjects fulfilled both pPD and pDLB criteria. Conversely, about one third of iRBD people (30.2%) did not meet either pPD or pDLB criteria. At follow-up (40.6 ± 43.6 months), 28.8% subjects phenoconverted, developing PD (56.1%), DLB (39%), or multiple system atrophy (4.9%). Subjects with iRBD fulfilling either pPD or pDLB criteria, or both, have an increased risk of phenoconversion (adjusted hazard ratio, aHR 2.34, 95% confidence interval, CI 1.24-4.41). On the opposite, subjects not fulfilling prodromal criteria have a significantly reduced short-term phenoconversion likelihood (aHR 0.43, 95% CI 0.23-0.81). Notably, pPD and pDLB criteria did not predict PD and DLB diagnoses, respectively. CONCLUSIONS People with iRBD are highly heterogeneous, and the presence of other concomitant signs and symptoms is frequent, leading to faster phenoconversion. Thus, the terms idiopathic and isolated may be poorly appropriate and possibly even confounding. These results pave the way to a more appropriate new lexicon for people with RBD.
Collapse
Affiliation(s)
- Dario Arnaldi
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Beatrice Orso
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Federico Massa
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Silvia Morbelli
- Nuclear Medicine Unit, Department of Medical SciencesUniversity of TurinTurinItaly
| | - Flavio Nobili
- Department of NeuroscienceUniversity of GenoaGenoaItaly
| | - Michela Figorilli
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular MedicineUniversity of CagliariCagliariItaly
| | - Elisa Casaglia
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular MedicineUniversity of CagliariCagliariItaly
| | - Martina Mulas
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular MedicineUniversity of CagliariCagliariItaly
| | - Michele Terzaghi
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Unit Sleep MedicineIRCCS Mondino FoundationPaviaItaly
| | - Elena Capriglia
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Unit Sleep MedicineIRCCS Mondino FoundationPaviaItaly
| | - Gaetano Malomo
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Unit Sleep MedicineIRCCS Mondino FoundationPaviaItaly
| | - Michela Solbiati
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Unit Sleep MedicineIRCCS Mondino FoundationPaviaItaly
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Fabio Pizza
- IRCCS Istituto Delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Francesco Biscarini
- IRCCS Istituto Delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Monica Puligheddu
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular MedicineUniversity of CagliariCagliariItaly
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio‐EmiliaModenaItaly
| |
Collapse
|
3
|
Bramich S, Noyce AJ, King AE, Naismith SL, Kuruvilla MV, Lewis SJG, Roccati E, Bindoff AD, Barnham KJ, Beauchamp LC, Vickers JC, Pérez-Carbonell L, Alty J. Isolated rapid eye movement sleep behaviour disorder (iRBD) in the Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) Sleep Study: protocol and baseline characteristics. J Sleep Res 2024; 33:e14109. [PMID: 38014898 DOI: 10.1111/jsr.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a sleep disorder that is characterised by dream enactment episodes during REM sleep. It is the strongest known predictor of α-synuclein-related neurodegenerative disease (αNDD), such that >80% of people with iRBD will eventually develop Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy in later life. More research is needed to understand the trajectory of phenoconversion to each αNDD. Only five 'gold standard' prevalence studies of iRBD in older adults have been undertaken previously, with estimates ranging from 0.74% to 2.01%. The diagnostic recommendations for video-polysomnography (vPSG) to confirm iRBD makes prevalence studies challenging, as vPSG is often unavailable to large cohorts. In Australia, there have been no iRBD prevalence studies, and little is known about the cognitive and motor profiles of Australian people with iRBD. The Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) Sleep Study will investigate the prevalence of iRBD in Tasmania, an island state of Australia, using validated questionnaires and home-based vPSG. It will also explore several cognitive, motor, olfactory, autonomic, visual, tactile, and sleep profiles in people with iRBD to better understand which characteristics influence the progression of iRBD to αNDD. This paper details the ISLAND Sleep Study protocol and presents preliminary baseline results.
Collapse
Affiliation(s)
- Samantha Bramich
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Sharon L Naismith
- Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | | | - Simon J G Lewis
- Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Kevin J Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Laura Pérez-Carbonell
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
- Department of Neurology, Royal Hobart Hospital, Hobart, Australia
| |
Collapse
|
4
|
Stephen CD, Vangel M, Gupta AS, MacMore JP, Schmahmann JD. Rates of change of pons and middle cerebellar peduncle diameters are diagnostic of multiple system atrophy of the cerebellar type. Brain Commun 2024; 6:fcae019. [PMID: 38410617 PMCID: PMC10896291 DOI: 10.1093/braincomms/fcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Definitive diagnosis of multiple system atrophy of the cerebellar type (MSA-C) is challenging. We hypothesized that rates of change of pons and middle cerebellar peduncle diameters on MRI would be unique to MSA-C and serve as diagnostic biomarkers. We defined the normative data for anterior-posterior pons and transverse middle cerebellar peduncle diameters on brain MRI in healthy controls, performed diameter-volume correlations and measured intra- and inter-rater reliability. We studied an Exploratory cohort (2002-2014) of 88 MSA-C and 78 other cerebellar ataxia patients, and a Validation cohort (2015-2021) of 49 MSA-C, 13 multiple system atrophy of the parkinsonian type (MSA-P), 99 other cerebellar ataxia patients and 314 non-ataxia patients. We measured anterior-posterior pons and middle cerebellar peduncle diameters on baseline and subsequent MRIs, and correlated results with Brief Ataxia Rating Scale scores. We assessed midbrain:pons and middle cerebellar peduncle:pons ratios over time. The normative anterior-posterior pons diameter was 23.6 ± 1.6 mm, and middle cerebellar peduncle diameter 16.4 ± 1.4 mm. Pons diameter correlated with volume, r = 0.94, P < 0.0001. The anterior-posterior pons and middle cerebellar peduncle measures were smaller at first scan in MSA-C compared to all other ataxias; anterior-posterior pons diameter: Exploratory, 19.3 ± 2.6 mm versus 20.7 ± 2.6 mm, Validation, 19.9 ± 2.1 mm versus 21.1 ± 2.1 mm; middle cerebellar peduncle transverse diameter, Exploratory, 12.0 ± 2.6 mm versus 14.3 ±2.1 mm, Validation, 13.6 ± 2.1 mm versus 15.1 ± 1.8 mm, all P < 0.001. The anterior-posterior pons and middle cerebellar peduncle rates of change were faster in MSA-C than in all other ataxias; anterior-posterior pons diameter rates of change: Exploratory, -0.87 ± 0.04 mm/year versus -0.09 ± 0.02 mm/year, Validation, -0.89 ± 0.48 mm/year versus -0.10 ± 0.21 mm/year; middle cerebellar peduncle transverse diameter rates of change: Exploratory, -0.84 ± 0.05 mm/year versus -0.08 ± 0.02 mm/year, Validation, -0.94 ± 0.64 mm/year versus -0.11 ± 0.27 mm/year, all values P < 0.0001. Anterior-posterior pons and middle cerebellar peduncle diameters were indistinguishable between Possible, Probable and Definite MSA-C. The rate of anterior-posterior pons atrophy was linear, correlating with ataxia severity. Using a lower threshold anterior-posterior pons diameter decrease of -0.4 mm/year to balance sensitivity and specificity, area under the curve analysis discriminating MSA-C from other ataxias was 0.94, yielding sensitivity 0.92 and specificity 0.87. For the middle cerebellar peduncle, with threshold decline -0.5 mm/year, area under the curve was 0.90 yielding sensitivity 0.85 and specificity 0.79. The midbrain:pons ratio increased progressively in MSA-C, whereas the middle cerebellar peduncle:pons ratio was almost unchanged. Anterior-posterior pons and middle cerebellar peduncle diameters were smaller in MSA-C than in MSA-P, P < 0.001. We conclude from this 20-year longitudinal clinical and imaging study that anterior-posterior pons and middle cerebellar peduncle diameters are phenotypic imaging biomarkers of MSA-C. In the correct clinical context, an anterior-posterior pons and transverse middle cerebellar peduncle diameter decline of ∼0.8 mm/year is sufficient for and diagnostic of MSA-C.
Collapse
Affiliation(s)
- Christopher D Stephen
- Ataxia Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cognitive Behavioral Neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Vangel
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Anoopum S Gupta
- Ataxia Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cognitive Behavioral Neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jason P MacMore
- Ataxia Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cognitive Behavioral Neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeremy D Schmahmann
- Ataxia Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cognitive Behavioral Neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Benbir-Senel G, Albayrak N, Yanik I, Gokcen-Polat E, Schenck CH, Karadeniz D. Risk stratification for phenoconversion in patients with isolated REM sleep behavior disorder. A follow-up study from Turkey. Rev Neurol 2024; 78:73-81. [PMID: 38289245 PMCID: PMC11064968 DOI: 10.33588/rn.7803.2023181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is one of the strongest prodromal markers of alpha-synucleinopathies. We aimed to investigate non-invasive clinical and quantitative predictors of phenoconversion from iRBD to parkinsonism. PATIENTS AND METHODS We prospectively followed-up a total of 45 patients (57.8% men) for eight years. Clinical assessments, Sniffin' Sticks Odor Identification Test, Farnsworth-Munsell 100 Hue Color Vision test, Beck Depression Inventory and Rome III Criteria for constipation were performed. Polysomnographic parameters, sleep spindles, electroencephalographic (EEG) spectral analysis, heart rate variability (HRV) were analyzed. RESULTS Eight patients (17.8%) showed phenoconversion to parkinsonism after a mean duration of 3.2 ± 1 years. Odds ratio for predicting phenoconversion was highest for patients =60 years of age with anosmia and constipation -44.8 (4.5-445.7); kappa = 4.291-. Duration, frequency or density of sleep spindles failed to demonstrate significant correlations. In EEG spectral analysis, lower alpha power in occipital region during wakefulness and REM sleep was significantly correlated with phenoconversion. Slowing in EEG spectrum power, together with age =60 years, anosmia and constipation, resulted in the highest odds ratio -122.5 (9.7-1543.8); kappa = 3.051-. CONCLUSIONS It is of great importance to have a world-wide perspective of phenoconversion rates from iRBD to overt neurodegeneration, since racial and geographical factors may play important modifying roles. Relatively younger age and shorter disease duration may also be confounding factors for lower rate in our study. Neurophysiological biomarkers seem to be important predictors of phenoconversion, though more research is needed to establish subtypes of iRBD with different probabilities of evolution to overt synucleinopathy.
Collapse
Affiliation(s)
| | - N Albayrak
- Vivantes Klinikum im Friedrichshain, Berlin, Alemania
- Taksim Hospital de Formación e Investigación, Estanbul, Turquía
| | - I Yanik
- Taksim Hospital de Formación e Investigación, Estanbul, Turquía
| | | | | | - D Karadeniz
- Minnesota Regional Sleep Disorders Centre, Mineápolis, EE.UU
| |
Collapse
|
6
|
Orso B, Brosse S, Frasnelli J, Arnaldi D. Opportunities and Pitfalls of REM Sleep Behavior Disorder and Olfactory Dysfunction as Early Markers in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S275-S285. [PMID: 38517805 PMCID: PMC11494648 DOI: 10.3233/jpd-230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
During its pre-motor stage, Parkinson's disease (PD) presents itself with a multitude of non-motor symptoms with different degrees of specificity and sensitivity. The most important among them are REM sleep behavior disorder (RBD) and olfactory dysfunction. RBD is a parasomnia characterized by the loss of REM sleep muscle atonia and dream-enacting behaviors. Olfactory dysfunction in individuals with prodromal PD is usually described as hyposmia (reduced sense of smell) or anosmia (complete loss of olfactory function). These symptoms can precede the full expression of motor symptoms by decades. A close comprehension of these symptoms and the underlying mechanisms may enable early screening as well as interventions to improve patients' quality of life. Therefore, these symptoms have unmatched potential for identifying PD patients in prodromal stages, not only allowing early diagnosis but potentially opening a window for early, possibly disease-modifying intervention. However, they come with certain challenges. This review addresses some of the key opportunities and pitfalls of both RBD and olfactory dysfunction as early markers of PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Sarah Brosse
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Research Center, Sacré-Coeur Hospital of Montreal, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Research Center, Sacré-Coeur Hospital of Montreal, Montréal, Québec, Canada
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
7
|
Sobreira-Neto MA, Stelzer FG, Gitaí LLG, Alves RC, Eckeli AL, Schenck CH. REM sleep behavior disorder: update on diagnosis and management. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1179-1194. [PMID: 38157884 PMCID: PMC10756822 DOI: 10.1055/s-0043-1777111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 01/03/2024]
Abstract
REM sleep behavior disorder (RBD) is characterized by a loss of atonia of skeletal muscles during REM sleep, associated with acting out behaviors during dreams. Knowledge of this pathology is important to predict neurodegenerative diseases since there is a strong association of RBD with diseases caused by the deposition of alpha-synuclein in neurons (synucleinopathies), such as Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Proper diagnosis of this condition will enable the use of future neuroprotective strategies before motor and cognitive symptoms. Diagnostic assessment should begin with a detailed clinical history with the patient and bed partner or roommate and the examination of any recorded home videos. Polysomnography (PSG) is necessary to verify the loss of sleep atonia and, when documented, the behaviors during sleep. Technical recommendations for PSG acquisition and analysis are defined in the AASM Manual for the scoring of sleep and associated events, and the PSG report should describe the percentage of REM sleep epochs that meet the criteria for RWA (REM without atonia) to better distinguish patients with and without RBD. Additionally, PSG helps rule out conditions that may mimic RBD, such as obstructive sleep apnea, non-REM sleep parasomnias, nocturnal epileptic seizures, periodic limb movements, and psychiatric disorders. Treatment of RBD involves guidance on protecting the environment and avoiding injuries to the patient and bed partner/roommate. Use of medications are also reviewed in the article. The development of neuroprotective medications will be crucial for future RBD therapy.
Collapse
Affiliation(s)
| | - Fernando Gustavo Stelzer
- Univeridade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto SP, Brazil.
| | - Lívia Leite Góes Gitaí
- Universidade Federal de Alagoas, Faculty of Medicine, Division of Neurology, Maceió AL, Brazil.
| | | | - Alan Luiz Eckeli
- Univeridade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto SP, Brazil.
| | - Carlos H. Schenck
- Minnesota Regional Sleep Disorders Center; and University of Minnesota, Medical School, Departments of Psychiatry; and Hennepin County Medical Center, Minneapolis MN, United States of America.
| |
Collapse
|
8
|
Feuerstein JS, Amara A. REM Behavior Disorder: Implications for PD Therapeutics. Curr Neurol Neurosci Rep 2023; 23:727-734. [PMID: 37831394 DOI: 10.1007/s11910-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia that occurs during REM sleep, characterized by REM sleep without atonia (RSWA) and dream enactment behavior (DEB). RBD is associated with several diseases and medications but most notably is a prodromal feature of synucleinopathies, including Parkinson's disease (PD). This article reviews RBD, its treatments, and implications for PD therapeutics. RECENT FINDINGS Recent research recognizes RBD as a prodromal marker of PD, resulting in expansion of basic science and clinical investigations of RBD. Current basic science research investigates the pathophysiology of RBD and explores animal models to allow therapeutic development. Clinical research has focused on natural history observation, as well as potential RBD treatments and their impact on sleep and phenoconversion to neurodegenerative disease. RBD serves as a fresh access point to develop both neuroprotective and symptomatic therapies in PD. These types of investigations are novel and will benefit from the more established basic science infrastructure to develop new interventions.
Collapse
Affiliation(s)
- Jeanne S Feuerstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurology, Rocky Mountain Regional VA Medical Center, 12631 E. 17th Ave Room 5508, Mail Stop B185, Aurora, CO, 80045, USA.
| | - Amy Amara
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|