1
|
Delanty N, Mohanraj R, Shankar R, Wehner T, Stephen LJ, D'Souza W, Cappucci S, McMurray R, Sainz-Fuertes R, Villanueva V. Perampanel for the treatment of epilepsy with genetic aetiology: Real-world evidence from the PERMIT Extension study. Epilepsy Res 2024; 202:107339. [PMID: 38492461 DOI: 10.1016/j.eplepsyres.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Genetic factors contribute to the aetiology of epilepsy in >50% of cases, and information on the use of antiseizure medications in people with specific aetiologies will help guide treatment decisions. The PERMIT Extension study pooled data from two real-world studies (PERMIT and PROVE) to investigate the effectiveness and safety/tolerability of perampanel (PER) when used to treat people with focal and generalised epilepsy in everyday clinical practice. This post-hoc analysis of PERMIT Extension explored the use of PER when used to treat individuals presumed to have epilepsy with a genetic aetiology. Assessments included retention rate (evaluated at 3, 6 and 12 months), effectiveness (responder and seizure freedom rates; evaluated at 3, 6, 12 months and the last visit [last observation carried forward) and tolerability (adverse events [AEs]). Of the 6822 people with epilepsy included in PERMIT Extension, 1012 were presumed to have a genetic aetiology. The most common genetic aetiologies were idiopathic generalised epilepsy (IGE; 58.2%), tuberous sclerosis (1.1%), Dravet syndrome (0.8%) and genetic epilepsy with febrile seizures plus (GEFS+; 0.5%). Retention rates at 3, 6 and 12 months in the total genetic aetiology population were 89.3%, 79.7% and 65.9%, respectively. In the total genetic aetiology population, responder rates at 12 months and the last visit were 74.8% and 68.3%, respectively, and corresponding seizure freedom rates were 48.9% and 46.5%, respectively. For the specific aetiology subgroups, responder rates at 12 months and the last visit were, respectively: 90.4% and 84.4% (IGE), 100% and 57.1% (tuberous sclerosis), 100% and 71.4% (Dravet syndrome), and 33.3% and 20.0% (GEFS+). Corresponding seizure freedom rates were, respectively: 73.1% and 64.6% (IGE), 33.3% and 22.2% (tuberous sclerosis), 20.0% and 28.6% (Dravet syndrome), and 0% and 0% (GEFS+). The incidence of AEs was 46.5% for the total genetic aetiology population, 48.8% for IGE, 27.3% for tuberous sclerosis, 62.5% for Dravet syndrome, and 20% for GEFS+. Tolerability findings were consistent with PER's known safety profile. PER was effective and generally well tolerated when used in individuals with a presumed genetic epilepsy aetiology in clinical practice. PER was effective across a wide range of genetic aetiologies.
Collapse
Affiliation(s)
- Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| | - Rajiv Mohanraj
- Greater Manchester Neurosciences Centre, Salford Royal Hospital, UK
| | | | - Tim Wehner
- National Hospital for Neurology and Neurosurgery, UCLH Foundation Trust, and Department of Clinical and Experimental Epilepsy, UCL, London, UK
| | - Linda J Stephen
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital, Glasgow, Scotland, UK
| | - Wendyl D'Souza
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Victoria, Australia
| | | | | | | | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
2
|
Corniello C, Dono F, Evangelista G, Consoli S, De Angelis S, Cipollone S, Liviello D, Polito G, Melchiorre S, Russo M, Granzotto A, Anzellotti F, Onofrj M, Thomas A, Sensi SL. Diagnosis and treatment of late-onset myoclonic epilepsy in Down syndrome (LOMEDS): A systematic review with individual patients' data analysis. Seizure 2023; 109:62-67. [PMID: 37267668 DOI: 10.1016/j.seizure.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION The late onset myoclonic epilepsy in Down Syndrome (LOMEDS) is a peculiar epilepsy type characterized by cortical myoclonus and generalized tonic-clonic seizures (GTCS), in people suffering from cognitive decline in Down syndrome (DS). In this review, we analyzed available data on the diagnostic and therapeutic management of individuals with LOMEDS. METHODS We performed a systematic search of the literature to identify the diagnostic and therapeutic management of patients with LOMEDS. The following databases were used: PubMed, Google Scholar, EMBASE, CrossRef. The protocol was registered on PROSPERO (registration code: CRD42023390748). RESULTS Data from 46 patients were included. DS was diagnosed according to the patient's clinical and genetic characteristics. Diagnosis of Alzheimer's dementia (AD) preceded the onset of epilepsy in all cases. Both myoclonic seizures (MS) and generalized tonic-clonic seizures (GTCS) were reported, the latter preceding the onset of MS in 28 cases. EEG was performed in 45 patients, showing diffuse theta/delta slowing with superimposed generalized spike-and-wave or polyspike-and-wave. A diffuse cortical atrophy was detected in 34 patients on neuroimaging. Twenty-seven patients were treated with antiseizure medication (ASM) monotherapy, with reduced seizure frequency in 17 patients. Levetiracetam and valproic acid were the most used ASMs. Up to 41% of patients were unresponsive to first-line treatment and needed adjunctive therapy for seizure control. CONCLUSIONS AD-related pathological changes in the brain may play a role in LOMEDS onset, although the mechanism underlying this phenomenon is still unknown. EEG remains the most relevant investigation to be performed. A significant percentage of patients developed a first-line ASM refractory epilepsy. ASMs which modulate the glutamatergic system may represent a good therapeutic option.
Collapse
Affiliation(s)
- Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy.
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Sibilla De Angelis
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Sara Cipollone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Davide Liviello
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Gaetano Polito
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Melchiorre
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | | | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|