1
|
Huber S, Knoll MA, Berktold M, Würzner R, Brindlmayer A, Weber V, Posch AE, Mrazek K, Lepuschitz S, Ante M, Beisken S, Orth-Höller D, Weinberger J. Genomic and Phenotypic Analysis of Linezolid-Resistant Staphylococcus epidermidis in a Tertiary Hospital in Innsbruck, Austria. Microorganisms 2021; 9:1023. [PMID: 34068744 PMCID: PMC8150687 DOI: 10.3390/microorganisms9051023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Whole genome sequencing is a useful tool to monitor the spread of resistance mechanisms in bacteria. In this retrospective study, we investigated genetic resistance mechanisms, sequence types (ST) and respective phenotypes of linezolid-resistant Staphylococcus epidermidis (LRSE, n = 129) recovered from a cohort of patients receiving or not receiving linezolid within a tertiary hospital in Innsbruck, Austria. Hereby, the point mutation G2603U in the 23S rRNA (n = 91) was the major resistance mechanism followed by the presence of plasmid-derived cfr (n = 30). The majority of LRSE isolates were ST2 strains, followed by ST5. LRSE isolates expressed a high resistance level to linezolid with a minimal inhibitory concentration of ≥256 mg/L (n = 83) in most isolates, particularly in strains carrying the cfr gene (p < 0.001). Linezolid usage was the most prominent (but not the only) trigger for the development of linezolid resistance. However, administration of linezolid was not associated with a specific resistance mechanism. Restriction of linezolid usage and the monitoring of plasmid-derived cfr in LRSE are potential key steps to reduce linezolid resistance and its transmission to more pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Miriam A. Knoll
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Michael Berktold
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Anita Brindlmayer
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (A.B.); (V.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (A.B.); (V.W.)
| | - Andreas E. Posch
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Katharina Mrazek
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Sarah Lepuschitz
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Michael Ante
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Stephan Beisken
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | | | - Johannes Weinberger
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| |
Collapse
|
2
|
Mottola C, Semedo-Lemsaddek T, Mendes JJ, Melo-Cristino J, Tavares L, Cavaco-Silva P, Oliveira M. Molecular typing, virulence traits and antimicrobial resistance of diabetic foot staphylococci. J Biomed Sci 2016; 23:33. [PMID: 26952716 PMCID: PMC4782296 DOI: 10.1186/s12929-016-0250-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes are foot infections that may be colonized by pathogenic and antimicrobial resistant bacteria, harboring several virulence factors, that could impair its successful treatment. Staphylococcus aureus is one of the most prevalent isolate in diabetic foot infections, together with aerobes and anaerobes. METHODS In this study, conducted in the Lisbon area, staphylococci isolated (n = 53) from diabetic foot ulcers were identified, genotyped and screened for virulence and antimicrobial resistance traits. Genetic relationship amongst isolates was evaluated by pulsed-field-gel-electrophoresis with further multilocus sequence typing of the identified pulsotypes. PCR was applied for detection of 12 virulence genes and e-test technique was performed to determine minimal inhibitory concentration of ten antibiotics. RESULTS Among the 53 isolates included in this study, 41 Staphylococcus aureus were identified. Staphylococcal isolates were positive for intercellular adhesins icaA and icaD, negative for biofilm associated protein bap and pantone-valentine leucocidin pvl. S. aureus quorum sensing genes agrI and agrII were identified and only one isolate was positive for toxic shock syndrome toxin tst. 36 % of staphylococci tested were multiresistant and higher rates of resistance were obtained for ciprofloxacin and erythromycin. Clonality analysis revealed high genomic diversity and numerous S. aureus sequence types, both community- and hospital-acquired, belonging mostly to clonal complexes CC5 and C22, widely diffused in Portugal nowadays. CONCLUSIONS This study shows that diabetic foot ulcer staphylococci are genomically diverse, present resistance to medically important antibiotics and harbour virulence determinants. These properties suggest staphylococci can contribute to persistence and severity of these infections, leading to treatment failure and to the possibility of transmitting these features to other microorganisms sharing the same niche. In this context, diabetic patients may become a transmission vehicle for microorganisms' clones between community and clinical environments.
Collapse
Affiliation(s)
- Carla Mottola
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Teresa Semedo-Lemsaddek
- BioFIG, Centro para a Biodiversidade, Genómica Integrativa e Funcional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - João J Mendes
- Departamento de Medicina Interna, Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, EPE, Rua de Santa Marta, 1169-024, Lisbon, Portugal.
| | - José Melo-Cristino
- Faculdade de Medicina, Universidade de Lisboa, Instituto de Microbiologia, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Luís Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Patrícia Cavaco-Silva
- TechnoPhage, S.A., Avenida Prof. Egas Moniz, 1600-190, Lisbon, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Via Alternativa ao Monte de Caparica, 2829-511, Caparica, Portugal.
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
3
|
Linezolid-dependent function and structure adaptation of ribosomes in a Staphylococcus epidermidis strain exhibiting linezolid dependence. Antimicrob Agents Chemother 2014; 58:4651-6. [PMID: 24890589 DOI: 10.1128/aac.02835-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differences in the function and structure of isolated ribosomes which were assembled in the presence of linezolid. The catalytic activity of peptidyltransferase was found to be significantly higher in the ribosomes derived from the linezolid-dependent strain. Interestingly, the same ribosomes exhibited an abnormal ribosomal subunit dissociation profile on a sucrose gradient in the absence of linezolid, but the profile was restored after treatment of the ribosomes with an excess of the antibiotic. Our study suggests that linezolid most likely modified the ribosomal assembly procedure, leading to a new functional ribosomal population active only in the presence of linezolid. Therefore, the higher growth rate of the partially linezolid-dependent strains could be attributed to the functional and structural adaptations of ribosomes to linezolid.
Collapse
|
4
|
Demeler J, Krüger N, Krücken J, von der Heyden VC, Ramünke S, Küttler U, Miltsch S, López Cepeda M, Knox M, Vercruysse J, Geldhof P, Harder A, von Samson-Himmelstjerna G. Phylogenetic characterization of β-tubulins and development of pyrosequencing assays for benzimidazole resistance in cattle nematodes. PLoS One 2013; 8:e70212. [PMID: 23950913 PMCID: PMC3741318 DOI: 10.1371/journal.pone.0070212] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Control of helminth infections is a major task in livestock production to prevent health constraints and economic losses. However, resistance to established anthelmintic substances already impedes effective anthelmintic treatment in many regions worldwide. Thus, there is an obvious need for sensitive and reliable methods to assess the resistance status of at least the most important nematode populations. Several single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various nematodes correlate with resistance to benzimidazoles (BZ), a major anthelmintic class. Here we describe the full-length β-tubulin isotype 1 and 2 and α-tubulin coding sequences of the cattle nematode Ostertagia ostertagi. Additionally, the Cooperia oncophora α-tubulin coding sequence was identified. Phylogenetic maximum-likelihood analysis revealed that both isotype 1 and 2 are orthologs to the Caenorhabditis elegans ben-1 gene which is also associated with BZ resistance upon mutation. In contrast, a Trichuris trichiura cDNA, postulated to be β-tubulin isotype 1 involved in BZ resistance in this human parasite, turned out to be closely related to C. elegans β-tubulins tbb-4 and mec-7 and would therefore represent the first non-ben-1-like β-tubulin to be under selection through treatment with BZs. A pyrosequencing assay was established to detect BZ resistance associated SNPs in β-tubulin isotype 1 codons 167, 198 and 200 of C. oncophora and O. ostertagi. PCR-fragments representing either of the two alleles were combined in defined ratios to evaluate the pyrosequencing assay. The correlation between the given and the measured allele frequencies of the respective SNPs was very high. Subsequently laboratory isolates and field populations with known resistance status were analyzed. With the exception of codon 167 in Cooperia, increases of resistance associated alleles were detected for all codons in at least one of the phenotypically resistant population. Pyrosequencing provides a fast, inexpensive and sensitive alternative to conventional resistance detection methods.
Collapse
Affiliation(s)
- Janina Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nina Krüger
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ursula Küttler
- Institute for Parasitology, Hannover University of Veterinary Medicine, Hannover, Germany
| | - Sandra Miltsch
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Michael López Cepeda
- Dirección de Investigaciones (DE), Universidad Pedagogica y Tecnologica de Colombia (UPTC), Tunja, Boyacá, Colombia
| | - Malcolm Knox
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, FD McMaster Laboratory, Chiswick, Armidale, New South Wales, Australia
| | - Jozef Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Achim Harder
- Institute for Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
5
|
Pournaras S, Ntokou E, Zarkotou O, Ranellou K, Themeli-Digalaki K, Stathopoulos C, Tsakris A. Linezolid dependence in Staphylococcus epidermidis bloodstream isolates. Emerg Infect Dis 2013; 19:129-32. [PMID: 23260390 PMCID: PMC3557967 DOI: 10.3201/eid1901.111527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We document linezolid dependence among 5 highly linezolid-resistant (LRSE) Staphylococcus epidermidis bloodstream isolates that grew substantially faster at 32 µg/mL linezolid presence. These isolates carried the mutations T2504A and C2534T in multiple 23S rRNA copies and 2 mutations leading to relevant amino acid substitutions in L3 protein. Linezolid dependence could account for increasing LRSE emergence.
Collapse
Affiliation(s)
- Spyros Pournaras
- Department of Microbiology, University of Thessaly Medical School, Larissa, Greece.
| | | | | | | | | | | | | |
Collapse
|
6
|
Alternative Agents to Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Am J Ther 2013; 20:200-12. [DOI: 10.1097/mjt.0b013e31821109ec] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 2013; 68:4-11. [PMID: 22949625 PMCID: PMC8445637 DOI: 10.1093/jac/dks354] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The oxazolidinone antibiotic linezolid has demonstrated potent antimicrobial activity against Gram-positive bacterial pathogens, including methicillin-resistant staphylococci. This article systematically reviews the published literature for reports of linezolid-resistant Staphylococcus (LRS) infections to identify epidemiological, microbiological and clinical features for these infections. Linezolid remains active against >98% of Staphylococcus, with resistance identified in 0.05% of Staphylococcus aureus and 1.4% of coagulase-negative Staphylococcus (CoNS). In all reported cases, patients were treated with linezolid prior to isolation of LRS, with mean times of 20.0 ± 47.0 months for S. aureus and 11.0 ± 8.0 days for CoNS. The most common mechanisms for linezolid resistance were mutation (G2576T) to the 23S rRNA (63.5% of LRSA and 60.2% of LRCoNS) or the presence of a transmissible cfr ribosomal methyltransferase (54.5% of LRSA and 15.9% of LRCoNS). The emergence of linezolid resistance in Staphylococcus poses significant challenges to the clinical treatment of infections caused by these organisms, and in particular CoNS.
Collapse
Affiliation(s)
- Bing Gu
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Theodoros Kelesidis
- UCLA David Geffen School of Medicine, Division of Infectious Diseases, Los Angeles, California, USA
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Janet Hindler
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Romney M. Humphries
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| |
Collapse
|
8
|
The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob Agents Chemother 2012; 57:1173-9. [PMID: 23254434 DOI: 10.1128/aac.02047-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clinical Staphylococcus epidermidis isolate 426-3147L exhibits an unusually high resistance to linezolid that exceeds 256 μg/ml. The presence of the cfr gene, encoding the RNA methyltransferase targeting an rRNA nucleotide located in the linezolid binding site, accounts for a significant fraction of resistance. The association of cfr with a multicopy plasmid is one of the factors that contribute to its elevated expression. Mapping of the cfr transcription start sites identified the native cfr promoter. Furthermore, analysis of the cfr transcripts in Staphylococcus epidermidis 426-3147L showed that some of them originate from the upstream plasmid-derived promoters whose activity contributes to efficient cfr transcription. The genetic environment of the cfr gene and its idiosyncratic transcription pattern result in increased activity of Cfr methyltransferase, leading to a high fraction of the ribosomes being methylated at A2503 of the 23S rRNA. Curing of the Staphylococcus epidermidis 426-3147L isolate from the cfr-containing plasmid reduced the linezolid MIC to 64 μg/ml, indicating that other determinants contribute to resistance. Nucleotide sequence analysis revealed the presence of the C2534T mutation in two of the six 23S rRNA gene alleles as well as the presence of mutations in the genes of ribosomal proteins L3 and L4, which were previously implicated in linezolid resistance. Thus, the combination of resistance mechanisms operating through alteration of the drug target site appears to cause an unusually high level of linezolid resistance in the isolate.
Collapse
|
9
|
[Nosocomial spread of linezolid-resistant Staphylococcus hominis in two hospitals in Majorca]. Enferm Infecc Microbiol Clin 2011; 29:339-44. [PMID: 21435748 DOI: 10.1016/j.eimc.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Since March 2008, several linezolid and teicoplanin-resistant Staphylococcus hominis (S. hominis) isolates have been recovered from patients admitted to the two major hospitals on the island of Majorca, Spain. For this reason, a study was conducted to determine the molecular epidemiology of these isolates and the mechanism of linezolid resistance. METHODS The molecular epidemiology study was performed by pulsed-field gel electrophoresis (PFGE) analysis, after digestion with ApaI. Linezolid resistance mechanisms were evaluated by PCR amplification of a fragment of the domain V of the 23S rRNA gene (followed by sequencing) and cfr gene. RESULTS From March 2008 to February 2009, 15 linezolid and teicoplanin-resistant S. hominis isolates were recovered from 14 patients. All of them, except one, were hospitalised in the intensive care units of either of the two institutions. Isolates were obtained mainly from blood cultures (9). The majority of infected patients (12 of 15 infectious episodes, 80.0%) had received courses of linezolid prior to detection of the resistant isolate. PFGE analysis revealed the presence of a unique clone among linezolid resistant S. hominis isolates. The G2576T mutation was detected in all the linezolid resistant strains. None of the resistant isolates showed a positive PCR for the cfr gene. All of the isolates were also resistant to penicillin, oxacillin, trimethoprim-sulfamethoxazole, ciprofloxacin, levofloxacin, and tobramicin; whereas all of them were susceptible to erythromycin, tetracycline, gentamicin, and daptomycin. The MIC of vancomycin was 4μg/ml for all the strains. CONCLUSIONS The detection of linezolid resistant Staphylococci highlights the need to rationalise the use of linezolid, and maintain an active surveillance of its resistance to preserve the clinical usefulness of this antimicrobial.
Collapse
|
10
|
Kosowska-Shick K, Julian KG, McGhee PL, Appelbaum PC, Whitener CJ. Molecular and epidemiologic characteristics of linezolid-resistant coagulase-negative staphylococci at a tertiary care hospital. Diagn Microbiol Infect Dis 2010; 68:34-9. [PMID: 20727467 DOI: 10.1016/j.diagmicrobio.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 11/27/2022]
Abstract
We investigated emergence of linezolid resistance among coagulase-negative staphylococci at our tertiary care center in 2007. All 17 cases were healthcare associated, and prior administration of linezolid was documented <or=2 months before first isolation of linezolid-resistant coagulase-negative staphylococci for all but 1 patient. Pulse-field gel electrophoresis analysis of the 14 available strains demonstrated 1 predominant clonal type, suggesting nosocomial spread. In addition to mutations in 23S rRNA and L4 previously described, we observed novel alterations in the 23S rRNA gene (G(2215)A) and in the L3 protein (substitutions L(101)V, H(146)Q/R, F(147)I, V(154)L, M(156)T). The increase in linezolid-resistant coagulase-negative staphylococci correlated with nosocomial transmission of selected mutated strains in patients who had received linezolid.
Collapse
|
11
|
Bouza E. New therapeutic choices for infections caused by methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2010; 15 Suppl 7:44-52. [PMID: 19951334 DOI: 10.1111/j.1469-0691.2009.03091.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, a marked increase in the incidence of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has occurred in many countries. This review addresses the effectiveness and limitations of drugs classically used for the treatment of MRSA, e.g. vancomycin, and also newer anti-MRSA antimicrobials, e.g. second-generation glycolipopeptides, tigecycline, and beta-lactams.
Collapse
Affiliation(s)
- E Bouza
- Servicio de Microbiología Clínica y E. Infecciosas, Hospital General Universitario Gregorio Marañón, Universidad Complutenste, Madrid, and Ciber de Enfermedades Respiratories (CIBERES), Spain.
| |
Collapse
|
12
|
Schmitz FJ, Fluit AC. Mechanisms of antibacterial resistance. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Polyphyletic emergence of linezolid-resistant staphylococci in the United States. Antimicrob Agents Chemother 2009; 54:742-8. [PMID: 19933808 DOI: 10.1128/aac.00621-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the year 2000, linezolid has been used in the United States to treat infections caused by antimicrobial-resistant Gram-positive cocci. At present, linezolid-resistant (Linr) Staphylococcus aureus and Staphylococcus epidermidis strains are rare and the diversity of their genetic backgrounds is unknown. We performed sequence-based strain typing and resistance gene characterization of 46 Linr isolates that were collected from local and national sources between the years 2004 and 2007. Resistance was found to occur in at least three clonal complexes (CCs; lineages) of S. aureus and in at least four subclusters of a predominant, phylogenetically unstable CC of S. epidermidis. New candidate resistance mutations in 23S rRNA and the L4 riboprotein were identified among the S. epidermidis isolates. These findings suggest that linezolid resistance has emerged independently in multiple clones of S. aureus and with a variety of ribosomal mutations in multiple clones of S. epidermidis.
Collapse
|
14
|
Lincopan N, de Almeida LM, Elmor de Araújo MR, Mamizuka EM. Linezolid resistance in Staphylococcus epidermidis associated with a G2603T mutation in the 23S rRNA gene. Int J Antimicrob Agents 2009; 34:281-2. [PMID: 19376688 DOI: 10.1016/j.ijantimicag.2009.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/21/2009] [Accepted: 02/26/2009] [Indexed: 11/25/2022]
|
15
|
Rodríguez-Aranda A, Daskalaki M, Villar J, Sanz F, Otero JR, Chaves F. Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis 2009; 63:398-402. [DOI: 10.1016/j.diagmicrobio.2008.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/29/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
|
16
|
Kikuchi K. [Hospital infections by specific organisms and their management. 2. Staphylococcus epidermidis]. ACTA ACUST UNITED AC 2009; 97:2673-7. [PMID: 19156995 DOI: 10.2169/naika.97.2673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Molecular detection of benzimidazole resistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology 2009; 136:349-58. [DOI: 10.1017/s003118200800543x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYBenzimidazoles (BZ) are widely used to treat parasitic nematode infections of humans and animals, but resistance is widespread in veterinary parasites. Several polymorphisms in β-tubulin genes have been associated with BZ-resistance. In the present study, we investigated β-tubulin isotype 1 sequences of 18 Haemonchus contortus isolates with varying levels of resistance to thiabendazole. The only polymorphism whose frequency was significantly increased in the resistant isolates was TTC to TAC at codon 200. Real-time PCR (using DNA from 100 third-stage larvae, L3s) and pyrosequencing (from DNA from 1000–10 000 L3s) were used to measure allele frequencies at codon 200 of these isolates, producing similar results; drug sensitivity decreased with increasing TAC frequency. Pyrosequencing was also used to measure allele frequencies at positions 167 and 198. We showed that such measurements are sufficient to assess the BZ-resistance status of most H. contortus isolates. The concordance between real-time PCR and pyrosequencing results carried out in different laboratories indicated that these tools are suitable for the routine diagnosis of BZ-resistance in H. contortus. The molecular methods were more sensitive than the ‘egg hatch test’, and less time-consuming than current in vivo- or in vitro-anthelmintic resistance detection methods. Thus, they provide a realistic option for routine molecular resistance testing on farms.
Collapse
|
18
|
Endemic linezolid-resistant Staphylococcus epidermidis in a critical care unit. Eur J Clin Microbiol Infect Dis 2008; 28:527-33. [DOI: 10.1007/s10096-008-0657-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/11/2008] [Indexed: 11/26/2022]
|
19
|
Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother 2008; 52:1570-2. [PMID: 18212098 DOI: 10.1128/aac.01098-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid resistance in Staphylococcus aureus is typically associated with mutations in the 23S rRNA gene. Here we show that the accumulation of a single point mutation, G2576T, in the different copies of this gene causes stepwise increases in resistance, impairment of the biological fitness, and cross-resistance to quinupristin-dalfopristin and chloramphenicol.
Collapse
|
20
|
Emergence of Linezolid Resistance in a Methicillin Resistant Staphylococcus aureus Strain. Infection 2007; 36:85-7. [DOI: 10.1007/s15010-007-7220-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/16/2007] [Indexed: 11/26/2022]
|
21
|
Hong T, Li X, Wang J, Sloan C, Cicogna C. Sequential linezolid-resistant Staphylococcus epidermidis isolates with G2576T mutation. J Clin Microbiol 2007; 45:3277-80. [PMID: 17670931 PMCID: PMC2045370 DOI: 10.1128/jcm.02048-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report on an analysis of sequential isolates of Staphylococcus epidermidis from cultures of blood obtained from a patient with acute myeloid leukemia while the patient was receiving linezolid treatment. All 12 isolates had a linezolid MIC of 32 microg/ml. A 420-bp domain V region of the 23S rRNA gene from all isolates was amplified, and their nucleotide sequences were determined. A G2576T mutation was identified in all isolates. It was estimated that 67% of the 23S rRNA genes carried this mutation. This is the first report of the failure of linezolid treatment for Staphylococcus epidermidis bacteremia associated with a G2576T mutation in an immunocompromised patient.
Collapse
Affiliation(s)
- Tao Hong
- Department of Pathology, Clinical Microbiology Laboratory, Hackensack University Medical Center, 30 Prospect Ave, Hackensack, NJ 07601, USA.
| | | | | | | | | |
Collapse
|
22
|
Tenover FC, Williams PP, Stocker S, Thompson A, Clark LA, Limbago B, Carey RB, Poppe SM, Shinabarger D, McGowan JE. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol 2007; 45:2917-22. [PMID: 17634301 PMCID: PMC2045282 DOI: 10.1128/jcm.00913-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A challenge panel of enterococci (n = 50) and staphylococci (n = 50), including 17 and 15 isolates that were nonsusceptible to linezolid, respectively, were tested with the Clinical and Laboratory Standards Institute broth microdilution and disk diffusion reference methods. In addition, all 100 isolates were tested in parallel by Etest (AB Biodisk, Solna, Sweden), MicroScan WalkAway (Dade, West Sacramento, CA), BD Phoenix (BD Diagnostic Systems, Sparks, MD), VITEK (bioMérieux, Durham, NC), and VITEK 2 (bioMérieux) by using the manufacturers' protocols. Compared to the results of the broth microdilution method for detecting linezolid-nonsusceptible staphylococci and enterococci, MicroScan results showed the highest category agreement (96.0%). The overall categorical agreement levels for VITEK 2, Etest, Phoenix, disk diffusion, and VITEK were 93.0%, 90.0%, 89.6%, 88.0%, and 85.9%, respectively. The essential agreement levels (results within +/-1 doubling dilution of the MIC determined by the reference method) for MicroScan, Phoenix, VITEK 2, Etest, and VITEK were 99.0%, 95.8%, 92.0%, 92.0%, and 85.9%, respectively. The very major error rates for staphylococci were the highest for VITEK (35.7%), Etest (40.0%), and disk diffusion (53.3%), although the total number of resistant isolates tested was small. The very major error rate for enterococci with VITEK was 20.0%. Three systems (MicroScan, VITEK, and VITEK 2) provided no interpretations of nonsusceptible results for staphylococci. These data, from a challenge panel of isolates, illustrate that the recent emergence of linezolid-nonsusceptible staphylococci and enterococci is providing a challenge for many susceptibility testing systems.
Collapse
Affiliation(s)
- Fred C Tenover
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|