1
|
Kim MJ, Lee JE, Kim KG, Park DW, Cho SJ, Kim TS, Kee HY, Kim SH, Park HJ, Seo MH, Chung JK, Seo JJ. Long-term sentinel surveillance of enteroviruses in Gwangju, South Korea, 2011-2020. Sci Rep 2023; 13:2798. [PMID: 36797345 PMCID: PMC9933826 DOI: 10.1038/s41598-023-29461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Human enteroviruses (EVs) are associated with a broad spectrum of diseases. To understand EV epidemiology, we present longitudinal data reflecting changing EV prevalence patterns in South Korea. We collected 7160 specimens from patients with suspected EV infections in ten hospitals in Gwangju, Korea during 2011-2020. RNA extraction and real-time reverse transcription polymerase chain reaction using EV-specific probes and primers were performed. EV genotyping and phylogenetic analysis were performed; EVs were detected in 3076 samples (43.0%), and the annual EV detection rate varied. EV infection rates did not differ with sex, and children aged ≤ 4 years were the most prone to EV infection; this trend did not change over time. Overall, 35 different EV types belonging to four distinctive species and rhinoviruses were identified. Although serotype distribution changed annually, the most frequently observed EVs were EV-A71 (13.1% of the cases), CVA6 (8.3%), CVB5 (7.6%), CVA16 (7.6%), CVA10 (7.5%), E18 (7.5%), E30 (7.0%), and E11 (5.0%) during 2011-2020. The predominant EV genotypes by clinical manifestation were CVB5 for aseptic meningitis; EV-A71 for hand, foot, and mouth disease cases; and CVA10 for herpangina. These results will aid the development of vaccines against EV infection and allow comprehensive disease control.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea, 61954.
| | - Ji-eun Lee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Kwang gon Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Duck Woong Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun Ju Cho
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Tae sun Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye-young Kee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun-Hee Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye jung Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Mi Hee Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jae Keun Chung
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jin-jong Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| |
Collapse
|
2
|
Chouikha A, Rezig D, Driss N, Abdelkhalek I, Ben Yahia A, Touzi H, Meddeb Z, Ben Farhat E, Yahyaoui M, Triki H. Circulation and Molecular Epidemiology of Enteroviruses in Paralyzed, Immunodeficient and Healthy Individuals in Tunisia, a Country with a Polio-Free Status for Decades. Viruses 2021; 13:v13030380. [PMID: 33673590 PMCID: PMC7997211 DOI: 10.3390/v13030380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022] Open
Abstract
This report is an overview of enterovirus (EV) detection in Tunisian polio-suspected paralytic cases (acute flaccid paralysis (AFP) cases), healthy contacts and patients with primary immunodeficiencies (PID) during an 11-year period. A total of 2735 clinical samples were analyzed for EV isolation and type identification, according to the recommended protocols of the World Health Organization. Three poliovirus (PV) serotypes and 28 different nonpolio enteroviruses (NPEVs) were detected. The NPEV detection rate was 4.3%, 2.8% and 12.4% in AFP cases, healthy contacts and PID patients, respectively. The predominant species was EV-B, and the circulation of viruses from species EV-A was noted since 2011. All PVs detected were of Sabin origin. The PV detection rate was higher in PID patients compared to AFP cases and contacts (6.8%, 1.5% and 1.3% respectively). PV2 was not detected since 2015. Using nucleotide sequencing of the entire VP1 region, 61 strains were characterized as Sabin-like. Among them, six strains of types 1 and 3 PV were identified as pre-vaccine-derived polioviruses (VDPVs). Five type 2 PV, four strains belonging to type 1 PV and two strains belonging to type 3 PV, were classified as iVDPVs. The data presented provide a comprehensive picture of EVs circulating in Tunisia over an 11-year period, reveal changes in their epidemiology as compared to previous studies and highlight the need to set up a warning system to avoid unnoticed PVs.
Collapse
Affiliation(s)
- Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
- Research Laboratory, LR20IPT02, Pasteur Institute of Tunis, Tunis 1006, Tunisia
- Correspondence: ; Tel.: +216-71-843-755; Fax: +216-71-791-833
| | - Dorra Rezig
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
- Research Laboratory, LR20IPT02, Pasteur Institute of Tunis, Tunis 1006, Tunisia
| | - Nadia Driss
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
| | - Ichrak Abdelkhalek
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
| | - Ahlem Ben Yahia
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
| | - Essia Ben Farhat
- National Program of Immunization Basic Health Care Division, Ministry of Health Tunis, Tunis 1006, Tunisia; (E.B.F.); (M.Y.)
| | - Mahrez Yahyaoui
- National Program of Immunization Basic Health Care Division, Ministry of Health Tunis, Tunis 1006, Tunisia; (E.B.F.); (M.Y.)
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1068, Tunisia; (D.R.); (N.D.); (I.A.); (A.B.Y.); (H.T.); (Z.M.); (H.T.)
- Research Laboratory, LR20IPT02, Pasteur Institute of Tunis, Tunis 1006, Tunisia
| |
Collapse
|
3
|
Cheng W, Ji T, Zhou S, Shi Y, Jiang L, Zhang Y, Yan D, Yang Q, Song Y, Cai R, Xu W. Molecular epidemiological characteristics of echovirus 6 in mainland China: extensive circulation of genotype F from 2007 to 2018. Arch Virol 2021; 166:1305-1312. [PMID: 33638089 PMCID: PMC8036204 DOI: 10.1007/s00705-020-04934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Echovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.
Collapse
Affiliation(s)
- Wenjun Cheng
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuaifeng Zhou
- Hunan Provincial Centers for Disease Control and Prevention, Changsha, People's Republic of China
| | - Yong Shi
- Jiangxi Provincial Centers for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Lili Jiang
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, People's Republic of China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ru Cai
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
| | - Wenbo Xu
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Molecular Epidemiology of Enterovirus in Children with Central Nervous System Infections. Viruses 2021; 13:v13010100. [PMID: 33450832 PMCID: PMC7828273 DOI: 10.3390/v13010100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Limited recent molecular epidemiology data are available for pediatric Central Nervous System (CNS) infections in Europe. The aim of this study was to investigate the molecular epidemiology of enterovirus (EV) involved in CNS infections in children. Cerebrospinal fluid (CSF) from children (0–16 years) with suspected meningitis–encephalitis (ME) who were hospitalized in the largest pediatric hospital of Greece from October 2017 to September 2020 was initially tested for 14 common pathogens using the multiplex PCR FilmArray® ME Panel (FA-ME). CSF samples positive for EV, as well as pharyngeal swabs and stools of the same children, were further genotyped employing Sanger sequencing. Of the 330 children tested with FA-ME, 75 (22.7%) were positive for EV and 50 different CSF samples were available for genotyping. The median age of children with EV CNS infection was 2 months (IQR: 1–60) and 44/75 (58.7%) of them were male. There was a seasonal distribution of EV CNS infections, with most cases detected between June and September (38/75, 50.7%). EV genotyping was successfully processed in 84/104 samples: CSF (n = 45/50), pharyngeal swabs (n = 15/29) and stools (n = 24/25). Predominant EV genotypes were CV-B5 (16/45, 35.6%), E30 (10/45, 22.2%), E16 (6/45, 13.3%) and E11 (5/45, 11.1%). However, significant phylogenetic differences from previous described isolates were detected. No unusual neurologic manifestations were observed, and all children recovered without obvious acute sequelae. Specific EV circulating genotypes are causing a significant number of pediatric CNS infections. Phylogenetic analysis of these predominant genotypes found genetic differences from already described EV isolates.
Collapse
|
5
|
Monge S, Benschop K, Soetens L, Pijnacker R, Hahné S, Wallinga J, Duizer E. Echovirus type 6 transmission clusters and the role of environmental surveillance in early warning, the Netherlands, 2007 to 2016. ACTA ACUST UNITED AC 2019; 23. [PMID: 30424830 PMCID: PMC6234528 DOI: 10.2807/1560-7917.es.2018.23.45.1800288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background In the Netherlands, echovirus type 6 (E6) is identified through clinical and environmental enterovirus surveillance (CEVS and EEVS). Aim We aimed to identify E6 transmission clusters and to assess the role of EEVS in surveillance and early warning of E6. Methods We included all E6 strains from CEVS and EEVS from 2007 through 2016. CEVS samples were from patients with enterovirus illness. EEVS samples came from sewage water at pre-specified sampling points. E6 strains were defined by partial VP1 sequence, month and 4-digit postcode. Phylogenetic E6 clusters were detected using pairwise genetic distances. We identified transmission clusters using a combined pairwise distance in time, place and phylogeny dimensions. Results E6 was identified in 157 of 3,506 CEVS clinical episodes and 92 of 1,067 EEVS samples. Increased E6 circulation was observed in 2009 and from 2014 onwards. Eight phylogenetic clusters were identified; five included both CEVS and EEVS strains. Among these, identification in EEVS did not consistently precede CEVS. One phylogenetic cluster was dominant until 2014, but genetic diversity increased thereafter. Of 14 identified transmission clusters, six included both EEVS and CEVS; in two of them, EEVS identification preceded CEVS identification. Transmission clusters were consistent with phylogenetic clusters, and with previous outbreak reports. Conclusion Algorithms using combined time–place–phylogeny data allowed identification of clusters not detected by any of these variables alone. EEVS identified strains circulating in the population, but EEVS samples did not systematically precede clinical case surveillance, limiting EEVS usefulness for early warning in a context where E6 is endemic.
Collapse
Affiliation(s)
- Susana Monge
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kimberley Benschop
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Loes Soetens
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Susan Hahné
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jacco Wallinga
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erwin Duizer
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
6
|
Suresh S, Rawlinson WD, Andrews PI, Stelzer‐Braid S. Global epidemiology of nonpolio enteroviruses causing severe neurological complications: A systematic review and meta‐analysis. Rev Med Virol 2019; 30:e2082. [DOI: 10.1002/rmv.2082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sarika Suresh
- Melbourne Medical SchoolUniversity of Melbourne Parkville Australia
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
| | - William D. Rawlinson
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Serology and Virology Division (SAViD)Microbiology NSW Health Pathology Randwick Australia
| | - Peter Ian Andrews
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Department of Paediatric NeurologySydney Children's Hospital Randwick Australia
| | - Sacha Stelzer‐Braid
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
| |
Collapse
|
7
|
Richter J, Tryfonos C, Christodoulou C. Molecular epidemiology of enteroviruses in Cyprus 2008-2017. PLoS One 2019; 14:e0220938. [PMID: 31393960 PMCID: PMC6687182 DOI: 10.1371/journal.pone.0220938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/26/2019] [Indexed: 12/28/2022] Open
Abstract
Enteroviruses (EVs) are associated with a broad spectrum of disease manifestations, including aseptic meningitis, encephalitis, hand, foot and mouth disease, acute flaccid paralysis and acute flaccid myelitis with outbreaks being reported frequently world-wide. The aim of this study was the molecular characterization of all enteroviruses detected in Cyprus in the ten-year period from January 2008 and December 2017 as well as a description of the circulation patterns associated with the most frequently encountered genotypes. For this purpose, serum, cerebrospinal fluid, nasal swab, skin swab and/or stool samples from 2666 patients with a suspected EV infection were analysed between January 2008 and December 2017. Enteroviruses were detected in 295 (11.1%) patients, which were then investigated further for epidemiological analysis by VP1 genotyping. Overall, 24 different enterovirus types belonging to three different species were identified. The predominant species was EV-B (209/295, 71%), followed by species EV-A (77/295, 26.1%). Only one virus belonged to species EV-D, whereas EV-C enteroviruses were not identified at all. The most frequent genotypes identified were echovirus 30 (26.1%), echovirus 6 (14.2%) and coxsackievirus A6 (10.9%). While Echovirus 30 and echovirus 6 frequency was significantly higher in patients older than 3 years of age, the opposite was observed for CV-A16 and EV-A71, which dominated in young children less than 3 years. Importantly, for the current study period a significant increase of previously only sporadically observed EV-A types, such as EV-A71 and CV-A16 was noted. A phylogenetic analysis of EV-A71 showed that the majority of the EV-A71 strains from Cyprus belonged to sub-genogroup C1 and C2, with the exception of one C4 strain that was observed in 2011. The data presented provide a comprehensive picture of enteroviruses circulating in Cyprus over the last decade and will be helpful to clinicians and researchers involved in the treatment, prevention and control of enteroviral infections by helping interpret trends in enteroviral diseases by associating them with circulating serotypes, for studying the association of enteroviruses with clinical manifestations and develop strategies for designing future EV vaccines.
Collapse
Affiliation(s)
- Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
8
|
Genetic diversity of the enteroviruses detected from cerebrospinal fluid (CSF) samples of patients with suspected aseptic meningitis in northern West Bank, Palestine in 2017. PLoS One 2018; 13:e0202243. [PMID: 30532168 PMCID: PMC6287809 DOI: 10.1371/journal.pone.0202243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human enterovirus genus showed a wide range of genetic diversity. OBJECTIVES To investigate the genetic diversity of the enteroviruses isolated in 2017 in northern West Bank, Palestine. STUDY DESIGN 249 CSF samples from aseptic meningitis cases were investigated for HEV using two RT-PCR protocols targeting the 5' NCR and the VP1 region of the HEV genome. The phylogenetic characterization of the sequenced VP1 region of Echovirus18 (E18) and Coxsackievirus B5 (CVB5) isolated in Palestine along with 27 E18 and 27 CVB5 sequences available from the Genbank were described. RESULTS E18 and CVB5 account for 50% and 35% of the successfully HEV types, respectively. Phylogenetic tree of E18 and CVB5 showed three main clusters, with all Palestinian isolates uniquely clustering together with those from China and from different countries, respectively. Cluster I of E18, with 13 Palestinian and 6 Chinese isolates, showed the lowest haplotype-to-sequence ratio (0.6:1), haplotype diversity (Hd), nucleotide diversity (π), and number of segregating sites (S) compared to clusters II and III. Furthermore, cluster I showed negative Tajima's D and Fu-Li'sF tests with statistically significant departure from neutrality (P<0.01). In both E18 and CVB5 populations, high haplotype diversity, but low genetic diversity was evident. Inter-population pairwise genetic distance (Fst) and gene flow (Nm) showed that the Palestinian E18 and CVB5 clusters were highly differentiated from the other clusters. CONCLUSIONS The study divulged close genetic relationship between Palestinian HEV strains as confirmed by population genetics and phylogenetic analyses.
Collapse
|
9
|
Wieczorek M, Krzysztoszek A, Ciąćka A, Figas A. Molecular characterization of environmental and clinical echovirus 6 isolates from Poland, 2006-2014. J Med Virol 2016; 89:936-940. [PMID: 27736044 DOI: 10.1002/jmv.24709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate the genetic variability of echovirus 6 (E6) isolates from environmental samples and clinical cases of aseptic meningitis from 2006 to 2014. The analysis of the VP1 region showed the extensive diversity (up to 18.8%) and revealed that E6 circulating in Poland belong to four groups. Environmental strains clustered in three groups excepting the 2012 outbreak group, which shows the sudden introduction of new epidemic variant with Asiatic origin. Data from the study established relationships of E6 from Poland with previously characterized strains and confirmed the importance of both clinical and environmental surveillance. J. Med. Virol. 89:936-940, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Ciąćka
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Figas
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
10
|
Tang J, Yoshida H, Ding Z, Tao Z, Zhang J, Tian B, Zhao Z, Zhang L. Molecular epidemiology and recombination of human enteroviruses from AFP surveillance in Yunnan, China from 2006 to 2010. Sci Rep 2014; 4:6058. [PMID: 25317568 PMCID: PMC5377527 DOI: 10.1038/srep06058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/21/2014] [Indexed: 11/12/2022] Open
Abstract
The study represents the genetic overview of non-polio enteroviruses (NPEV) isolated from acute flaccid paralysis (AFP) cases in Yunnan Province from 2006 to 2010. Molecular typing based on VP1 nucleotide sequence was carried out on 98 NPEV isolates, and 33 serotypes were identified. EV-B was detected most frequently with an overall prevalence of 71.4%, followed by EV-A (18.4%) and EV-C (10.2%). No EV-D was identified. NPEV positive rate was higher in children <3 years of age and in summer and autumn months. Clinically, 68.4% patients presented with fever, and 16 cases (16.3%) were classified as Guillain-Barré syndrome, followed by myositis (13.3%). The phylogenetic analysis on the VP1 and 3D regions of prevalent serotypes provided evidence for recombination events among them. EV-A71, an important pathogen previously demonstrated to be associated with paralysis, had also been detected (n = 8) in this study and they all belonged to genotype C4. Great genetic divergence between Yunnan isolates and strains from other regions of the world was revealed. The findings of the study are of great importance for further research on molecular evolution of EV under the circumstance of no specialized EV surveillance system in China.
Collapse
Affiliation(s)
- Jingjing Tang
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
- These authors contributed equally to this work
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
- These authors contributed equally to this work
| | - Zhengrong Ding
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Zexin Tao
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People's Republic of China
| | - Jie Zhang
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Bingjun Tian
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Zhixian Zhao
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Lifen Zhang
- YunnanCenter for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
11
|
Cabrerizo M, Trallero G, Simmonds P. Recombination and evolutionary dynamics of human echovirus 6. J Med Virol 2013; 86:857-64. [PMID: 24114692 DOI: 10.1002/jmv.23741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/07/2022]
Abstract
Enterovirus (EV) infections are associated with a wide array of often severe disease presentations including aseptic meningitis, encephalitis, and acute flaccid paralysis. Surveillance for polioviruses and other EVs is therefore important as a public health measure both for patient management and epidemiological studies. From 1988 to 2008, echovirus (E) 30 was the predominant genotype in Spain (33.7% of the total typed EVs). E6 was also endemic throughout this period although isolated less frequently (12.5%). In 2009, however, a substantial increase in the incidence of E6 was detected (60%), displacing E30 type (2%). To investigate the evolution and recombination in the epidemiology and transmission of E6 in Spain, a genetic analysis in VP1 and 3Dpol regions of 67 Spanish strains collected during the period 2004-2010 was performed. All VP1 sequences clustered monophyletically in the assigned genogroup C, subgroup 9, currently the predominant circulating strains identified in Europe and elsewhere in the last 10 years. 3Dpol sequences were interspersed with other species B EVs resulting from several recombination events that generated at least 12 different recombinant forms (RFs) among study samples. These showed typically minimal divergence in VP1. The co-circulation of different lineages of E6 in the same geographical area associated with its mainly endemic pattern of transmission may have contributed to the extremely short estimated half-life of E6 RFs (0.87 years). This pattern contrasts markedly with other species B EVs and EV71 where VP1 lineage expansion and extinction occurred in step with defined recombination events and periodic changes in incidence.
Collapse
Affiliation(s)
- María Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | |
Collapse
|
12
|
Abstract
Between late May and July 2012, 105 children (62 boys) originating from 2 cities of Thrace were examined because of fever, headache and abdominal pain. Thirty-three of them were hospitalized. They had normal hemograms, and mild to moderate cerebrospinal fluid pleocytosis. Echovirus 30 was isolated from fecal and cerebrospinal fluid samples. Among confirmed cases of echoviral illness, the meningitis attack rate was 51.9%.
Collapse
|
13
|
Smura T, Kakkola L, Blomqvist S, Klemola P, Parsons A, Kallio-Kokko H, Savolainen-Kopra C, Kainov DE, Roivainen M. Molecular evolution and epidemiology of echovirus 6 in Finland. INFECTION GENETICS AND EVOLUTION 2013; 16:234-47. [DOI: 10.1016/j.meegid.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
|
14
|
dos Santos GPL, da Costa EV, Tavares FN, da Costa LJ, da Silva EE. Genetic diversity of Echovirus 30 involved in aseptic meningitis cases in Brazil (1998-2008). J Med Virol 2012; 83:2164-71. [PMID: 22012725 DOI: 10.1002/jmv.22235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aseptic meningitis is one of the most common neurological disorders caused by enteroviruses. Among them, Echovirus 30 (E30) is described as the main etiological agent of many outbreaks and sporadic cases. This study investigated the genomic variability of E30 isolated from the cerebrospinal fluid (CSF) of aseptic meningitis cases that occurred from 1998 to 2008 in Brazil. Over a 10-year period (1998-2008), 302 non-polio enteroviruses were isolated, of which 177 were identified as E30 (58.6%). Phylogenetic analysis of the complete VP1 gene (876 nt) of 48 E30 isolates was performed and compared with additional Brazilian and foreign strains. E30 VP1 sequences segregated into three distinct major groups and seven subgroups, which were linked to the isolation year. In general, sequence divergence among E30 strains ranged from 0.2% to 13.8%. A common direct ancestor for this set of E30 strains was not defined. Brazilian isolates from Group I were related genetically to a 1997 USA isolate and both may have a common origin. Group III representatives showed close relationship to the 2007 Argentinean isolates. The present results complement existing data on the molecular characterization and genetic variability of E30 and may contribute to the understanding of the epidemiology of aseptic meningitis in the region.
Collapse
|
15
|
Kyriakopoulou Z, Pliaka V, Tsakogiannis D, Ruether IGA, Komiotis D, Gartzonika C, Levidiotou-Stefanou S, Markoulatos P. Genome analysis of two type 6 echovirus (E6) strains recovered from sewage specimens in Greece in 2006. Virus Genes 2011; 44:207-16. [DOI: 10.1007/s11262-011-0688-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/31/2011] [Indexed: 11/28/2022]
|
16
|
Siafakas N, Attilakos A, Vourli S, Stefos E, Meletiadis J, Nikolaidou P, Zerva L. Molecular detection and identification of enteroviruses in children admitted to a university hospital in Greece. Mol Cell Probes 2011; 25:249-54. [PMID: 21803150 DOI: 10.1016/j.mcp.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/02/2011] [Indexed: 12/17/2022]
Abstract
Although enteroviral infections occur frequently during childhood, the circulation of particular serotypes has never been studied in Greece. The objectives of the present report were molecular detection and identification of human enteroviruses in children admitted with nonspecific febrile illness or meningitis to a university hospital during a 22-month period. A one-step Real-Time RT-PCR protocol was used for rapid enterovirus detection in genetic material extracted directly from clinical samples, and a sensitive reverse transcription-semi-nested PCR targeting part of the VP1-coding region was used for genotypic identification of the different serotypes. Twenty-one enterovirus strains were detected and identified in 20 stool samples, one cerebrospinal fluid (CSF) sample, one whole blood sample and one throat swab from 21 out of 134 febrile patients (15.7%). Ten strains belonged to Human Enterovirus Species B (HEV-B) (six serotypes) and eleven to HEV-A (four serotypes). Most of the strains were closely associated with virulent strains circulating in Europe and elsewhere. Detection of the emerging pathogen enterovirus 71 for a first time in Greece was particularly important.
Collapse
Affiliation(s)
- Nikolaos Siafakas
- Clinical Microbiology Laboratory, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, 1, Rimini str., Haidari 124 62, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
17
|
Fares W, Rezig D, Seghier M, Ben Yahia A, Touzi H, Triki H. Phylogenetic analysis of complete VP1 sequences of echoviruses 11 and 6: high genetic diversity and circulation of genotypes with a wide geographical and temporal range. J Med Microbiol 2011; 60:1017-1025. [DOI: 10.1099/jmm.0.028795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wasfi Fares
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory on Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunisia
| | - Dorra Rezig
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory on Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunisia
| | - Mohamed Seghier
- Laboratory of Enteroviruses, National Laboratory for Poliomyelitis, Institut Pasteur d’Algérie, Algeria
| | - Ahlem Ben Yahia
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory on Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory on Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory on Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunisia
| |
Collapse
|
18
|
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, Regagnon C, Charbonné F, Peigue-Lafeuille H. Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. INFECTION GENETICS AND EVOLUTION 2010; 11:276-89. [PMID: 20615482 DOI: 10.1016/j.meegid.2010.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/07/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Human echovirus types 6 (E-6) and 30 (E-30) cause seasonal epidemics of aseptic meningitis. These two enteroviruses are frequently observed in co-circulation, an epidemiological pattern that is prerequisite for the occurrence of dual infections, which can lead to recombination between co-infecting virus strains. Viral sequences were determined at loci 1D (VP1 capsid protein) and 3CD (non structural proteins) in 49 E-6 strains recovered in a single geographical region in France from 1999 to 2007, during the epidemiological survey of enterovirus infections. They were compared with previously recorded sequences of E-30 strains to investigate their evolutionary histories and possible recombination patterns. Phylogenetic analyses identified two distinct E-6 populations and different subpopulations. Assuming a relaxed molecular clock model and a Bayesian skyline demographic model in coalescent analyses with the BEAST program, the substitution rate in E-6 was estimated at 8.597×10(-3) and 6.252×10(-3) substitution/site/year for loci 1D and 3CD respectively. Consistent estimates of divergence times (t(MRCA)) were obtained for loci 1D and 3CD indicating that two distinct E-6 populations originated in 1997 and 1999. Incongruent phylogenetic patterns inferred for the two loci were indicative of recombination events between the two populations. Phylogenies including the E-30 3CD sequences showed close genetic relationships between E-6 and discrete E-30 subpopulations. Recombination breakpoints were located with statistical significance in E-6 and E-30 genomes. Estimates of t(MRCA) of phylogenetic recombinant clades indicated directional genetic transfers from E-30 to E-6 populations and their co-divergence over the time period studied.
Collapse
Affiliation(s)
- J-L Bailly
- Clermont Université, Université d'Auvergne, EA 3843, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mao N, Zhao L, Zhu Z, Chen X, Zhou S, Zhang Y, Cui A, Ji Y, Xu S, Xu W. An aseptic meningitis outbreak caused by echovirus 6 in Anhui province, China. J Med Virol 2010; 82:441-5. [PMID: 20087933 DOI: 10.1002/jmv.21707] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An outbreak of aseptic meningitis (AM) occurred in Jinzhai County in Anhui province from April to July in 2005. Totally, 97 children aged 3-15 years were hospitalized. To identify the etiologic agent, 77 cerebrospinal fluid specimens (CSF) and 5 fecal specimens were collected from the patients and cultured by human rhabdomyosarcoma (RD) cell line. Thirty isolates of human echovirus 6 (E6) from 27 CSF and 3 fecal specimens were confirmed by neutralization assay and sequencing analysis of the VP1 gene. The homology of VP1 gene among Anhui isolates was 99.7-100.0% and it indicated that this AM outbreak probable caused by a single transmission link of E6. Phylogenetic analysis based on all the available complete VP1 sequences indicated that E6 could be divided into clusters A, B, and C with at least 15% diversity between clusters and the C cluster could be further divided into C1, C2, C3, and C4. The Anhui isolates most resembled a 2005 strain from Russia (25465 Tambov) and belong to C4. This is the first report that E6 was responsible for an outbreak of AM in China. J. Med. Virol. 82:441-445, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Naiying Mao
- WHO WPRO Regional Reference Measles Lab and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Full-genome sequence analysis of a multirecombinant echovirus 3 strain isolated from sewage in Greece. J Clin Microbiol 2010; 48:1513-9. [PMID: 20129960 DOI: 10.1128/jcm.00475-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3' part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health.
Collapse
|
21
|
Jung E, Park K, Baek K, Kim D, Kang SY, Kang B, Cheon DS. Genetic Diversity of Echovirus 6 Strains Circulating in Korea. ACTA ACUST UNITED AC 2010. [DOI: 10.4167/jbv.2010.40.4.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- EunHye Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - KwiSung Park
- Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - KyoungAh Baek
- Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - DongUk Kim
- Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - ByungHak Kang
- Division of Enteric and Hepatitis Viruses, Department of Virology, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| | - Doo-Sung Cheon
- Division of Enteric and Hepatitis Viruses, Department of Virology, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| |
Collapse
|