1
|
Molinelli E, De Simoni E, Candelora M, Sapigni C, Brisigotti V, Rizzetto G, Offidani A, Simonetti O. Systemic Antibiotic Therapy in Hidradenitis Suppurativa: A Review on Treatment Landscape and Current Issues. Antibiotics (Basel) 2023; 12:978. [PMID: 37370297 DOI: 10.3390/antibiotics12060978] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, and inflammatory skin disease characterized by painful, deep-seated, nodules, abscesses, and sinus tracts in sensitive areas of the body, including axillary, inguinal, and anogenital regions. Antibiotics represent the first-line pharmacological treatment of HS because of their anti-inflammatory properties and antimicrobial effects. This narrative review summarizes the most significant current issues on the role of systemic antibiotics in the management of HS, critically analyzing the main limits of their use (antibiotic resistance and toxicity). Although, in the last decades, several cytokines have been implicated in the pathomechanism of HS and the research on the use of novel biologic agents in HS has been intensified, antibiotics remain a valid therapeutic approach. Future challenges regarding antibiotic therapy in HS comprise their use in association with biologics in the management of acute flare or as a bridge therapy to surgery.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Matteo Candelora
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| |
Collapse
|
2
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
3
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
4
|
Molinelli E, Sapigni C, D’Agostino GM, Brisigotti V, Rizzetto G, Bobyr I, Cirioni O, Giacometti A, Brescini L, Mazzanti S, Offidani A, Simonetti O. The Effect of Dalbavancin in Moderate to Severe Hidradenitis Suppurativa. Antibiotics (Basel) 2022; 11:1573. [PMID: 36358228 PMCID: PMC9686733 DOI: 10.3390/antibiotics11111573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 09/06/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by painful nodules, abscesses, and fistulas, localized to the areas of the folds where apocrine glands are present: the armpits, groin, inframammary region, and genital or perineal region. The management is still challenging, and it includes mainly systemic antibiotics, immunosuppressors, and biologic agents. Antibiotics are frequently used in the management of HS for their anti-inflammatory, immunomodulatory, and antimicrobial properties, but no data have been reported regarding the use of dalbavancin in HS. The aim of our practice was to evaluate efficacy, flare, and disease-free survival after dalbavancin therapy in a selected population with HS. We report the experience of the Ancona Dermatology Clinic in treating HS flare-ups with dalbavancin and its rationale for use. Our observation shows that the use of dalbavancin is an effective and well-tolerated treatment for the management of Hurley stage II-III HS; currently, dalbavancin should be considered as a supportive therapy for selected patients.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Giovanni Marco D’Agostino
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Ivan Bobyr
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Oscar Cirioni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Sara Mazzanti
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| |
Collapse
|
5
|
Rizzetto G, Molinelli E, Radi G, Cirioni O, Brescini L, Giacometti A, Offidani A, Simonetti O. MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics (Basel) 2022; 11:1504. [PMID: 36358159 PMCID: PMC9686594 DOI: 10.3390/antibiotics11111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Psoriatic patients present various infectious risk factors, but there are few studies in the literature evaluating the actual impact of psoriasis in severe staphylococcal skin infections. Our narrative review of the literature suggests that psoriatic patients are at increased risk of both colonization and severe infection, during hospitalization, by S. aureus. The latter also appears to play a role in the pathogenesis of psoriasis through the production of exotoxins. Hospitalized psoriatic patients are also at increased risk of MRSA skin infections. For this reason, new molecules are needed that could both overcome bacterial resistance and inhibit exotoxin production. In our opinion, in the near future, topical quorum sensing inhibitors in combination with current anti-MRSA therapies will be able to overcome the increasing resistance and block exotoxin production. Supplementation with Vitamin E (VE) or derivatives could also enhance the effect of anti-MRSA antibiotics, considering that psoriatic patients with metabolic comorbidities show a low intake of VE and low serum levels, making VE supplementation an interesting new perspective.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulia Radi
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics (Basel) 2022; 11:antibiotics11070944. [PMID: 35884198 PMCID: PMC9311791 DOI: 10.3390/antibiotics11070944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Daptomycin is active against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and the on-label indications for its use include complicated skin and skin structure infections (cSSSI). We performed a narrative review of the literature with the aim to evaluate the role of daptomycin in the skin wound healing process, proposing our point of view on the possible association with other molecules that could improve the skin healing process. Daptomycin may improve wound healing in MRSA-infected burns, surgical wounds, and diabetic feet, but further studies in humans with histological examination are needed. In the future, the combination of daptomycin with other molecules with synergistic action, such as vitamin E and derivates, IB-367, RNA III-inhibiting peptide (RIP), and palladium nanoflowers, may help to improve wound healing and overcome forms of antibiotic resistance.
Collapse
|
7
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
8
|
Efficacy of Cathelicidin LL-37 in an MRSA Wound Infection Mouse Model. Antibiotics (Basel) 2021; 10:antibiotics10101210. [PMID: 34680791 PMCID: PMC8532939 DOI: 10.3390/antibiotics10101210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. Methods: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. Results: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. Conclusions: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.
Collapse
|
9
|
Morroni G, Fioriti S, Salari F, Brenciani A, Brescini L, Mingoia M, Giovanetti E, Pocognoli A, Giacometti A, Molinelli E, Offidani A, Simonetti O, Cirioni O. Characterization and Clonal Diffusion of Ceftaroline Non-Susceptible MRSA in Two Hospitals in Central Italy. Antibiotics (Basel) 2021; 10:antibiotics10081026. [PMID: 34439075 PMCID: PMC8388857 DOI: 10.3390/antibiotics10081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Ceftaroline represents a novel fifth-generation cephalosporin to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Methods: Ceftaroline susceptibility of 239 MRSA isolates was assessed by disk diffusion and a MIC test strip following both EUCAST and CLSI guidelines. Non-susceptible isolates were epidemiologically characterized by pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing, and further investigated by PCR and whole genome sequencing to detect penicillin-binding protein (PBP) mutations as well as antibiotic resistance and virulence genes. Results: Fourteen isolates out of two hundred and thirty-nine (5.8%) were non-susceptible to ceftaroline (MIC > 1 mg/L), with differences between the EUCAST and CLSI interpretations. The characterized isolates belonged to seven different pulsotypes and three different clones (ST228/CC5-t041-SCCmecI, ST22/CC22-t18014-SCCmecIV, and ST22/CC22-t022-SCCmecIV), confirming a clonal diffusion of ceftaroline non-susceptible strains. Mutations in PBPs involved PBP2a for ST228-t041-SCCmecI strains and all the other PBPs for ST22-t18014-SCCmecIV and ST22-t022-SCCmecIV clones. All isolates harbored antibiotic resistance and virulence genes with a clonal distribution. Conclusion: Our study demonstrated that ceftaroline non-susceptibile isolates belonged not only to ST228 strains (the most widespread clone in Italy) but also to ST22, confirming the increasing role of these clones in hospital infections.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Federica Salari
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | | | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Oriana Simonetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0715963494
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| |
Collapse
|
10
|
Sharma N, Chhillar AK, Dahiya S, Punia A, Choudhary P, Gulia P, Behl A, Dangi M. Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections. Mini Rev Med Chem 2021; 22:26-42. [PMID: 33797362 DOI: 10.2174/1389557521666210402150325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen that causes nosocomial and community acquired infections. The accelerating emergence and prevalence of staphylococcal infections have grotesque health consequences which are mostly due to its anomalous capability to acquire drug resistance and scarcity of novel classes of antibacterials. Many combating therapies are centered on primary targets of S. aureus which are cell envelope, ribosomes and nucleic acids. This review describes various chemotherapeutic strategies for combating S. aureus infections which includes monotherapy, combination drug therapy, phage endolysin therapy, lysostaphins and antibacterial drones. Monotherapy has dwindled in due course of time but combination therapy, endolysin therapy, lysostaphin and antibacterial drones are emerging alternatives which efficiently conquer the shortcomings of monotherapy. Combinations of more than one antibiotic agents or combination of adjuvant with antibiotics provide a synergistic approach to combat infections causing pathogenic strains. Phage endolysin therapy and lysostaphin are also presents as possible alternatives to conventional antibiotic therapies. Antibacterial Drones goes a step further by specifically targeting the virulence genes in bacteria giving them a certain advantage over existing antibacterial strategies. But the challenge remains on the better understanding of these strategies for executing and implementing them in health sector. In this day and age, most of the S. aureus strains are resistant to ample number of antibiotics, so there is an urgent need to overcome such multidrug resistant strains for the welfare of our community.
Collapse
Affiliation(s)
| | | | | | - Aruna Punia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Prity Gulia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Mehak Dangi
- Centre for Bioinformatics, MDU, Rohtak 124001. India
| |
Collapse
|
11
|
Morroni G, Sante LD, Simonetti O, Brescini L, Kamysz W, Kamysz E, Mingoia M, Brenciani A, Giovanetti E, Bagnarelli P, Giacometti A, Cirioni O. Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates. Future Microbiol 2021; 16:221-227. [PMID: 33646013 DOI: 10.2217/fmb-2020-0204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Overview: The global spread of antibiotic resistance represents a serious threat for public health. Aim: We evaluated the efficacy of the antimicrobial peptide LL-37 as antimicrobial agent against multidrug-resistant Escherichia coli. Results: LL-37 showed good activity against mcr-1 carrying, extended spectrum β-lactamase- and carbapenemase-producing E. coli (minimum inhibitory concentration, MIC, from 16 to 64 mg/l). Checkerboard assays demonstrated synergistic effect of LL-37/colistin combination against all tested strains, further confirmed by time-kill and post antibiotic effect assays. MIC and sub-MIC concentrations of LL-37 were able to reduce biofilm formation. Conclusion: Our preliminary data indicated that LL-37/colistin combination was effective against multidrug-resistant E. coli strains and suggested a new possible clinical application.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Laura Di Sante
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical & Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
| | | | - Marina Mingoia
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life & Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Patrizia Bagnarelli
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
12
|
Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R, Jogl G. Cryo-electron microscopy structure of the 70S ribosome from Enterococcus faecalis. Sci Rep 2020; 10:16301. [PMID: 33004869 PMCID: PMC7530986 DOI: 10.1038/s41598-020-73199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.
Collapse
Affiliation(s)
- Eileen L. Murphy
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Kavindra V. Singh
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Bryant Avila
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Torsten Kleffmann
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Steven T. Gregory
- grid.20431.340000 0004 0416 2242Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI 02881 USA
| | - Barbara E. Murray
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Kurt L. Krause
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Reza Khayat
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Gerwald Jogl
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
13
|
New Evidence and Insights on Dalbavancin and Wound Healing in a Mouse Model of Skin Infection. Antimicrob Agents Chemother 2020; 64:AAC.02062-19. [PMID: 31932371 DOI: 10.1128/aac.02062-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Dalbavancin is an effective antibiotic that is widely used to treat skin infection. Our aim was to determine the effect of dalbavancin administration on wound healing compared to that of vancomycin and to elucidate if epidermal growth factor receptor (EGFR), matrix metalloproteinase 1 (MMP-1), MMP-9, and vascular endothelial growth factor (VEGF) could be involved in its therapeutic mechanism. A mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection was established. Mice were treated daily with vancomycin (10 mg/kg) and weekly with dalbavancin at day 1 (20 mg/kg) and day 8 (10 mg/kg). After 14 days, wounds were excised, and bacterial counts were performed. Wound healing was assessed by histological and immunohistochemical staining, followed by protein extraction and immunoblotting. Our microbiological results confirmed that both dalbavancin and vancomycin are effective in reducing the bacterial load in wounds. The dalbavancin group showed a strong effect compared with infected untreated animals and the vancomycin-treated group. The wounds treated with dalbavancin showed robust epidermal coverage with reconstitution of the regular and keratinized epidermal lining and well-organized granulation tissue with numerous blood vessels, although slightly less than that in the uninfected group. While in the vancomycin-treated group the epithelium appeared, in general, still hypertrophic, the granulation tissue appeared even less organized. We observed elevated EGFR and VEGF expression in both treated groups, although it was higher in dalbavancin-treated mice. MMP-1 and MMP-9 were decreased in uninfected tissue and in both treated tissues compared with untreated infected wounds. This study showed faster healing with dalbavancin treatment that might be associated with higher EGFR and VEGF levels.
Collapse
|
14
|
Dean Z, Maltas J, Wood KB. Antibiotic interactions shape short-term evolution of resistance in E. faecalis. PLoS Pathog 2020; 16:e1008278. [PMID: 32119717 PMCID: PMC7093004 DOI: 10.1371/journal.ppat.1008278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/24/2020] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic combinations are increasingly used to combat bacterial infections. Multidrug therapies are a particularly important treatment option for E. faecalis, an opportunistic pathogen that contributes to high-inoculum infections such as infective endocarditis. While numerous synergistic drug combinations for E. faecalis have been identified, much less is known about how different combinations impact the rate of resistance evolution. In this work, we use high-throughput laboratory evolution experiments to quantify adaptation in growth rate and drug resistance of E. faecalis exposed to drug combinations exhibiting different classes of interactions, ranging from synergistic to suppressive. We identify a wide range of evolutionary behavior, including both increased and decreased rates of growth adaptation, depending on the specific interplay between drug interaction and drug resistance profiles. For example, selection in a dual β-lactam combination leads to accelerated growth adaptation compared to selection with the individual drugs, even though the resulting resistance profiles are nearly identical. On the other hand, populations evolved in an aminoglycoside and β-lactam combination exhibit decreased growth adaptation and resistant profiles that depend on the specific drug concentrations. We show that the main qualitative features of these evolutionary trajectories can be explained by simple rescaling arguments that correspond to geometric transformations of the two-drug growth response surfaces measured in ancestral cells. The analysis also reveals multiple examples where resistance profiles selected by drug combinations are nearly growth-optimized along a contour connecting profiles selected by the component drugs. Our results highlight trade-offs between drug interactions and resistance profiles during the evolution of multi-drug resistance and emphasize evolutionary benefits and disadvantages of particular drug pairs targeting enterococci.
Collapse
Affiliation(s)
- Ziah Dean
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Beganovic M, Luther MK, Rice LB, Arias CA, Rybak MJ, LaPlante KL. A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clin Infect Dis 2019; 67:303-309. [PMID: 29390132 DOI: 10.1093/cid/ciy064] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
Enterococci, one of the most common causes of hospital-associated infections, are responsible for substantial morbidity and mortality. Enterococcus faecalis, the more common and virulent species, causes serious high-inoculum infections, namely infective endocarditis, that are associated with cardiac surgery and mortality rates that remained unchanged for the last 30 years. The best cures for these infections are observed with combination antibiotic therapy; however, optimal treatment has not been fully elucidated. It is the purpose of this review to highlight treatment options and their limitations, and provide direction for future investigative efforts to aid in the treatment of these severe infections. While ampicillin plus ceftriaxone has emerged as a preferred treatment option, mortality rates continue to be high, and from a safety standpoint, ceftriaxone, unlike other cephalosporins, promotes colonization with vancomycin resistant-enterococci due to high biliary concentrations. More research is needed to improve patient outcomes from this high-mortality disease.
Collapse
Affiliation(s)
- Maya Beganovic
- College of Pharmacy, University of Rhode Island, Kingston.,Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Megan K Luther
- College of Pharmacy, University of Rhode Island, Kingston.,Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island.,Center of Innovation in Long-Term Services and Supports, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Louis B Rice
- Rhode Island Hospital, Providence, Rhode Island, Providence, Rhode Island.,Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Bogota, Colombia.,Center for Infectious Diseases, UTHealth School of Public Health, Bogota, Colombia.,Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Michigan.,Department of Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University, Michigan.,Department of Pharmacy Services, Detroit Receiving Hospital, Michigan
| | - Kerry L LaPlante
- College of Pharmacy, University of Rhode Island, Kingston.,Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island.,Center of Innovation in Long-Term Services and Supports, Providence Veterans Affairs Medical Center, Providence, Rhode Island.,Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island
| |
Collapse
|
16
|
Simonetti O, Morroni G, Ghiselli R, Orlando F, Brenciani A, Xhuvelaj L, Provinciali M, Offidani A, Guerrieri M, Giacometti A, Cirioni O. In vitro and in vivo activity of fosfomycin alone and in combination with rifampin and tigecycline against Gram-positive cocci isolated from surgical wound infections. J Med Microbiol 2017; 67:139-143. [PMID: 29154746 DOI: 10.1099/jmm.0.000649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Complicated skin and soft tissue infections constitute a heterogeneous group of severe disorders, with surgical site infections being the most common hospital-acquired ones. The aim of our study was to investigate the synergistic and bactericidal activities of antimicrobial combinations of fosfomycin with rifampicin and tigecycline against Enterococcus faecalis, Enterococcus faecium and methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates, and also to evaluate their in vivo effects in a mouse wound infection model. In in vitro studies, the combinations of fosfomycin with rifampicin and tigecycline were both synergistic. These synergies were confirmed in in vivo studies: the drug combinations showed the highest antimicrobial effects compared to monotherapy. In conclusion, the efficacy of fosfomycin combinations, also confirmed in our in vivo model, may suggest new directions in the treatment of infected skin and a possible alternative way to control bacterial skin infection.
Collapse
Affiliation(s)
- Oriana Simonetti
- Dermatological Clinic, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Roberto Ghiselli
- General Surgery and Surgery Methodology Clinic, Polytechnic University of Marche - Ospedali Riuniti, Ancona, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Units, Research Department, INRCA IRRCS, Ancona, Italy
| | - Andrea Brenciani
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Ledia Xhuvelaj
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Mauro Provinciali
- Experimental Animal Models for Aging Units, Research Department, INRCA IRRCS, Ancona, Italy
| | | | - Mario Guerrieri
- General Surgery and Surgery Methodology Clinic, Polytechnic University of Marche - Ospedali Riuniti, Ancona, Italy
| | - Andrea Giacometti
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
17
|
Role of Daptomycin on Burn Wound Healing in an Animal Methicillin-Resistant Staphylococcus aureus Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.00606-17. [PMID: 28696234 DOI: 10.1128/aac.00606-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged hospitalization and antibiotic therapy are risk factors for the development of methicillin-resistant Staphylococcus aureus (MRSA) infections in thermal burn patients. We used a rat model to study the in vivo efficacy of daptomycin in the treatment of burn wound infections by S. aureus, and we evaluated the wound healing process through morphological and immunohistochemical analysis. A copper bar heated in boiling water was applied on a paraspinal site of each rat, resulting in two full-thickness burns. A small gauze was placed over each burn and inoculated with 5 × 107 CFU of S. aureus ATCC 43300. The study included two uninfected control groups with and without daptomycin treatment, an infected control group that did not receive any treatment, and two infected groups treated, respectively, with intraperitoneal daptomycin and teicoplanin. The main outcome measures were quantitative culture, histological evaluation of tissue repair, and immunohistochemical expression of wound healing markers: epidermal growth factor receptor (EGFR) and fibroblast growth factor 2 (FGF-2). The highest inhibition of infection was achieved in the group that received daptomycin, which reduced the bacterial load from 107 CFU/ml to about 103 CFU/g (P < 0.01). The groups treated with daptomycin showed better overall healing with epithelialization and significantly higher collagen scores than the other groups, and these findings were also confirmed by immunohistochemical data. In conclusion, our results support the hypothesis that daptomycin is an important modulator of wound repair by possibly reducing hypertrophic burn scar formation.
Collapse
|
18
|
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2017; 30:415-439. [PMID: 27208766 DOI: 10.1016/j.idc.2016.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vancomycin-resistant enterococci are serious health threats due in part to their ability to persist in rugged environments and their propensity to acquire antibiotic resistance determinants. Enterococci have now established a home in our hospitals and possess mechanisms to defeat most currently available antimicrobials. This article reviews the history of the struggle with this pathogen, what is known about the traits associated with its rise in the modern medical environment, and the current understanding of therapeutic approaches in severe infections caused by these microorganisms. As the 21st century progresses, vancomycin-resistant enterococci continue to pose a daunting clinical challenge.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louis B Rice
- Departments of Medicine, Microbiology and Immunology, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Avenue Cra 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
19
|
Pugliese N, Salvatore P, Iula DV, Catania MR, Chiurazzi F, Della Pepa R, Cerchione C, Raimondo M, Giordano C, Simeone L, Caruso S, Pane F, Picardi M. Ultrasonography-driven combination antibiotic therapy with tigecycline significantly increases survival among patients with neutropenic enterocolitis following cytarabine-containing chemotherapy for the remission induction of acute myeloid leukemia. Cancer Med 2017; 6:1500-1511. [PMID: 28556623 PMCID: PMC5504336 DOI: 10.1002/cam4.1063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 03/04/2017] [Indexed: 12/27/2022] Open
Abstract
Neutropenic enterocolitis (NEC) is an abdominal infection reported primarily in patients with acute myeloid leukemia (AML) following chemotherapy, especially cytarabine, a notable efficacious cytotoxic agent for AML remission. Specific data regarding the impact of different cytarabine schedules and/or antibacterial regimens for NEC are sparse. The aim of the study was to identify the predictors of outcome within 30 days of NEC onset. NEC episodes were retrospectively pinpointed among 440 patients with newly diagnosed AML hospitalized in our Institution, over a 10‐year period, for receiving chemotherapy protocols with 100–6000 mg/m2 daily of cytarabine. Two subgroups, survivors versus nonsurvivors, were compared by using logistic regression analysis. NEC was documented in 100 of 420 (23.8%) analyzed patients: 42.5% had received high‐dose cytarabine, whereas 19% and 15% intermediate‐dose and standard‐dose cytarabine, respectively (P < 0.001). The 30‐day NEC attributable mortality rate was 23%. In univariate analysis, antileukemic protocols containing robust dosages of cytarabine were significantly associated with high mortality (P < 0.001); whereas, standard‐dose cytarabine and prompt initiation (at the ultrasonographic appearance of intestinal mural thickening) of NEC therapy with antibiotic combinations including tigecycline were significantly associated with low mortality. In multivariate analysis, high‐dose cytarabine‐containing chemotherapy was the independent predictor of poor outcome (odds ratio [OR]: 0.109; 95% confidence interval [CI]: 0.032–0.364; P < 0.001), whereas ultrasonography‐driven NEC therapy with antibiotic regimens including tigecycline was associated with a favorable outcome (OR: 13.161; 95% CI: 1.587–109.17; P = 0.017). Chemotherapy schedules with robust dosages of cytarabine for AML remission are associated with a high rate of NEC incidence and attributable. Vigorous antibacterial therapy, triggered off pathologic ultrasonographic findings, with drug combinations which have broad antimicrobial coverage and good gut penetration, specifically those also including tigecycline, may be effective in improving 30‐day survival rate after NEC onset.
Collapse
Affiliation(s)
- Novella Pugliese
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Paola Salvatore
- Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Dora Vita Iula
- Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Maria Rosaria Catania
- Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Federico Chiurazzi
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Roberta Della Pepa
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Claudio Cerchione
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Marta Raimondo
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Claudia Giordano
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Luigia Simeone
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Simona Caruso
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Fabrizio Pane
- Departments of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Marco Picardi
- Advanced Biomedical Sciences, Federico II University Medical School, Naples, Italy
| |
Collapse
|
20
|
Skinner K, Sandoe JAT, Rajendran R, Ramage G, Lang S. Efficacy of rifampicin combination therapy for the treatment of enterococcal infections assessed in vivo using a Galleria mellonella infection model. Int J Antimicrob Agents 2017; 49:507-511. [PMID: 28235571 DOI: 10.1016/j.ijantimicag.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 12/01/2022]
Abstract
Enterococci are a leading cause of healthcare-associated infection worldwide and display increasing levels of resistance to many of the commonly used antimicrobials, making treatment of their infections challenging. Combinations of antibiotics are occasionally employed to treat serious infections, allowing for the possibility of synergistic killing. The aim of this study was to evaluate the effects of different antibacterial combinations against enterococcal isolates using an in vitro approach and an in vivo Galleria mellonella infection model. Five Enterococcus faecalis and three Enterococcus faecium strains were screened by paired combinations of rifampicin, tigecycline, linezolid or vancomycin using the chequerboard dilution method. Antibacterial combinations that displayed synergy were selected for in vivo testing using a G. mellonella larvae infection model. Rifampicin was an effective antibacterial enhancer when used in combination with tigecycline or vancomycin, with minimum inhibitory concentrations (MICs) of each individual antibiotic being reduced by between two and four doubling dilutions, generating fractional inhibitory concentration index (FICI) values between 0.31 and 0.5. Synergy observed with the chequerboard screening assays was subsequently observed in vivo using the G. mellonella model, with combination treatment demonstrating superior protection of larvae post-infection in comparison with antibiotic monotherapy. In particular, rifampicin in combination with tigecycline or vancomycin significantly enhanced larvae survival. Addition of rifampicin to anti-enterococcal treatment regimens warrants further investigation and may prove useful in the treatment of enterococcal infections whilst prolonging the clinically useful life of currently active antibiotics.
Collapse
Affiliation(s)
- Kirsty Skinner
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| | - Jonathan A T Sandoe
- Department of Microbiology, The General Infirmary at Leeds, Leeds LS1 3EX, UK
| | - Ranjith Rajendran
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sue Lang
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK.
| |
Collapse
|
21
|
|
22
|
Colistin enhances therapeutic efficacy of daptomycin or teicoplanin in a murine model of multiresistant Acinetobacter baumannii sepsis. Diagn Microbiol Infect Dis 2016; 86:392-398. [PMID: 27712928 DOI: 10.1016/j.diagmicrobio.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy of colistin combined with teicoplanin or daptomycin in an experimental mouse model of multiresistant Acinetobacter baumannii infection. Animal received intraperitoneally 1ml saline containing 2×1010CFU of A. baumannii. Colistin, daptomycin, teicoplanin, and colistin plus daptomycin or teicoplanin were given by intraperitoneal administration 2h after bacterial challenge. A control group received sodium chloride solution. In the in vitro study A. baumannii showed to be susceptible only to colistin with MIC of 2mg/l. In the in vivo study, colistin alone showed a good antimicrobial efficacy. When combined with teicoplanin or daptomycin, colistin produced the lowest bacterial and the best survival rates. In immunological studies, when colistin was associated to daptomycin or teicoplanin, both the number and the cytotoxic activity of NK cells increased. In conclusion, colistin combined with teicoplanin or daptomycin may improve the therapy of multiresistant A. baumannii infection.
Collapse
|
23
|
Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, Di Stefano A, Giacometti A, Offidani A. Efficacy of the Quorum Sensing Inhibitor FS10 Alone and in Combination with Tigecycline in an Animal Model of Staphylococcal Infected Wound. PLoS One 2016; 11:e0151956. [PMID: 27253706 PMCID: PMC4890846 DOI: 10.1371/journal.pone.0151956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/06/2016] [Indexed: 11/18/2022] Open
Abstract
In staphylococci, quorum sensing regulates both biofilm formation and toxin production, moreover it has been demonstrated to be inhibited by RNAIII inhibiting peptide (RIP). Aim our study was to evaluate the in vitro activity and its in vivo efficacy of the combined administration of FS10, a novel RIP derivative, and tigecycline in an animal model of methicillin-resistant (MR) and methicillin-sensitive (MS) Staphylococcus aureus wound infection. Using a 1.x2 cm template, one full thickness wound was established through the panniculus carnosus on the back subcutaneous tissue of each animal. Infection was determined by inoculation of 5x107 CFU/ml of bacteria, that produced an abscess within 24 h, after this, treatment was initiated. The study included, for each strain, a control group without infection, a control infected group that did not receive any treatment and a control infected group with drug-free foam dressing, and three infected groups treated, respectively, with: FS10-soaked foam dressing (containing 20 μg FS10), daily intraperitoneal tigecycline (7 mg/Kg), FS10-soaked foam dressing (containing 20 μg FS10) and daily intraperitoneal injections of tigecycline (7 mg/Kg). The main outcome measures were quantitative culture and histological examination of tissue repair. The highest inhibition of infection was achieved in the group that received FS10-soaked and parenteral tigecycline reducing the bacterial load from 107 CFU/ml to about 103 CFU/g for MSSA and to about 104 CFU/g for MRSA. The group treated with FS10-soaked foam dressing associated with parenteral tigecycline showed, histologically, better overall healing with epithelialization and collagen scores significantly higher than those of the other groups in both strains. In conclusion, the combined use of topical FS10 with i.p. tigecycline induced positive interaction in vivo, resulting in an enhanced therapeutic benefit versus staphylococcal infections in murine wound models.
Collapse
Affiliation(s)
- Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences; Università Politecnica delle Marche – Ospedali Riuniti, Ancona, Italy
- * E-mail:
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Italy, Department of Biomedical Sciences and Public Health; Università Politecnica delle Marche – Ospedali Riuniti, Ancona, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, Università degli Studi G. D’Annunzio, Chieti-Pescara, Italy
| | - Leonardo Baldassarre
- Department of Pharmacy, Università degli Studi G. D’Annunzio, Chieti-Pescara, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Units, Research Department, I.N.R.C.A. I.R.R.C.S., Ancona, Italy
| | - Elisa Pierpaoli
- Experimental Animal Models for Aging Units, Research Department, I.N.R.C.A. I.R.R.C.S., Ancona, Italy
| | - Guendalina Lucarini
- Clinic of Dermatology, Department of Clinical and Molecular Sciences; Università Politecnica delle Marche, Ancona, Italy
| | - Elena Orsetti
- Clinic of Infectious Diseases, Italy, Department of Biomedical Sciences and Public Health; Università Politecnica delle Marche – Ospedali Riuniti, Ancona, Italy
| | - Mauro Provinciali
- Experimental Animal Models for Aging Units, Research Department, I.N.R.C.A. I.R.R.C.S., Ancona, Italy
| | - Erika Fornasari
- Department of Pharmacy, Università degli Studi G. D’Annunzio, Chieti-Pescara, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, Università degli Studi G. D’Annunzio, Chieti-Pescara, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Italy, Department of Biomedical Sciences and Public Health; Università Politecnica delle Marche – Ospedali Riuniti, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences; Università Politecnica delle Marche – Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
24
|
|
25
|
Sendi P, Zimmerli W. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect 2012; 18:1176-84. [DOI: 10.1111/1469-0691.12003] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|