1
|
Chatterjee G, Saha AK, Khurshid S, Saha A. A Comprehensive Review of the Antioxidant, Antimicrobial, and Therapeutic Efficacies of Black Cumin ( Nigella sativa L.) Seed Oil and Its Thymoquinone. J Med Food 2025; 28:325-339. [PMID: 39807848 DOI: 10.1089/jmf.2024.k.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Black cumin (Nigella sativa L.) (family Ranunculaceae) is a largely utilized therapeutic herb worldwide. This comprehensive review discusses the pharmacological benefits of black cumin seed oil, focusing on its bioactive component thymoquinone (TQ). The review is structured as follows: First, we examine the antimicrobial properties of black cumin oil, followed by an analysis of its antioxidant capabilities. Finally, we explore its therapeutic potential, particularly in neurodegenerative diseases and COVID-19. Phytochemicals from N. sativa have exhibited potential for developing novel preventive and therapeutic strategies against jaundice, gastrointestinal disorders, skin diseases, anorexia, conjunctivitis, dyspepsia, intrinsic hemorrhage, amenorrhea, paralysis, anorexia, rheumatism, diabetes, hypertension, fever, influenza, eczema, asthma, cough, bronchitis, and headache. The broader spectrum of application for N. sativa and its essential bioactives have certainly enhanced the commercial value of this seed oil. TQ, a major constituent of black cumin seed oil, has numerous beneficial properties. Researchers have extensively studied black cumin seed oil and its major component, TQ. These studies have revealed a wide range of pharmacological properties, including anticancer, immunomodulatory, analgesic, antimicrobial, antidiabetic, and anti-inflammatory effects. Additionally, TQ has shown neuroprotective, spasmolytic, bronchodilatory, hepatoprotective, renoprotective, gastroprotective, and antioxidant activities.
Collapse
Affiliation(s)
- Gourab Chatterjee
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Asit Kumar Saha
- Department of Chemical Engineering, Haldia Institute of Technology, Haldia, India
| | - Shamama Khurshid
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Fusar Poli S, Locatelli C, Monistero V, Freu G, Cremonesi P, Castiglioni B, Lecchi C, Longheu CM, Tola S, Guaraglia A, Allievi C, Villa L, Manfredi MT, Addis MF. Staphylococcus aureus and methicillin-resistant staphylococci and mammaliicocci in the bulk tank milk of dairy cows from a livestock-dense area in northern Italy. Res Vet Sci 2025; 182:105482. [PMID: 39612737 DOI: 10.1016/j.rvsc.2024.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Staphylococcus aureus is the main etiologic agent of contagious dairy cow mastitis, while non-aureus staphylococci and mammaliicocci (NASM) are the bacteria most frequently isolated from milk. Beyond their impact on animal health, NASM can harbor antimicrobial resistance (AMR) genes with potential for bidirectional transfer with S. aureus, and methicillin-resistant (MR) staphylococci (MRS) can raise significant One Health concerns. In our study, we evaluated the prevalence and characteristics of MRS in the bulk tank milk (BTM) of 88 dairy farms in the livestock-dense province of Lodi, Lombardy, northern Italy. S. aureus was isolated from 32.95 % of BTM samples, with the Ribosomal Spacer PCR (RS-PCR) genotype B being the most prevalent, identified in 37.93 % of S. aureus positive farms. All isolates carried the ica genes (icaA, icaB, icaC, icaD) indicating the potential to produce biofilm. MRS were isolated in 56.81 % of farms. According to MALDI-TOF MS analysis, the most prevalent MR species included S. epidermidis (MRSE, 35.59 %) followed by S. aureus (MRSA, 18.64 %), M. sciuri (15.25 %), S. saprophyticus (11.86 %), S. borealis (6.78 %), S. haemolyticus (5.08 %), M. fleurettii, (3.39 %), S. cohnii, and S. pettenkoferi (1.70 % each). Most MR isolates carried the mecA gene, while none carried mecC. The staphylococcal cassette chromosome mec (SCCmec) was predominantly type V in MRSA (45.45 %) and type IV in MRSE (61.90 %). Given their relevance to One Health, monitoring AMR in all staphylococci and mammaliicocci isolated from milk is essential for understanding the prevalence, characteristics, and transmission dynamics of MR gene pools within dairy herds.
Collapse
Affiliation(s)
- Sara Fusar Poli
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; Laboratorio di Malattie Infettive degli Animali (MiLab), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Clara Locatelli
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Valentina Monistero
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Gustavo Freu
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Paola Cremonesi
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologie Agrarie (CNR-IBBA), 20133 Milan, Italy
| | - Bianca Castiglioni
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologie Agrarie (CNR-IBBA), 20133 Milan, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | | | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Alessandro Guaraglia
- Dipartimento di Scienze Umanistiche e Sociali, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Carolina Allievi
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; Laboratorio di Malattie Parassitarie e Zoonosi (ParVetLab), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Luca Villa
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; Laboratorio di Malattie Parassitarie e Zoonosi (ParVetLab), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Maria Teresa Manfredi
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; Laboratorio di Malattie Parassitarie e Zoonosi (ParVetLab), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali - DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; Laboratorio di Malattie Infettive degli Animali (MiLab), Università degli Studi di Milano, 26900 Lodi, Italy.
| |
Collapse
|
3
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
4
|
Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol 2023; 14:1190790. [PMID: 37455736 PMCID: PMC10344457 DOI: 10.3389/fmicb.2023.1190790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
Collapse
Affiliation(s)
- Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Wenli Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Vet Sci 2022; 9:vetsci9080430. [PMID: 36006345 PMCID: PMC9416249 DOI: 10.3390/vetsci9080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are considered less virulent as they do not produce a large number of toxic enzymes and toxins; however, they have been increasingly recognized as an important cause of bovine mastitis. In particular, the ability to form biofilms appears to be an important factor in CoNS pathogenicity, and it contributes more resistance to antimicrobials. The aim of this study was to investigate the pathogenic potential by assessing the biofilm-forming ability of CoNS isolated from normal bulk tank milk using the biofilm formation assay and to analyze the biofilm-associated resistance to antimicrobial agents using the disc diffusion method. One hundred and twenty-seven (78.4%) among 162 CoNS showed the ability of biofilm formation, and all species showed a significantly high ability of biofilm formation (p < 0.05). Although the prevalence of weak biofilm formers (39.1% to 80.0%) was significantly higher than that of other biofilm formers in all species (p < 0.05), the prevalence of strong biofilm formers was significantly higher in Staphylococcus haemolyticus (36.4%), Staphylococcus chromogenes (24.6%), and Staphylococcus saprophyticus (21.7%) (p < 0.05). Also, 4 (11.4%) among 35 non-biofilm formers did not harbor any biofilm-associated genes, whereas all 54 strong or moderate biofilm formers harbored 1 or more of these genes. The prevalence of MDR was significantly higher in biofilm formers (73.2%) than in non-formers (20.0%) (p < 0.05). Moreover, the distribution of MDR in strong or moderate biofilm formers was 81.5%, which was significantly higher than in weak (67.1%) and non-formers (20.0%) (p < 0.05). Our results indicated that various CoNS isolated from bulk tank milk, not from bovine with mastitis, have already showed a high ability to form biofilms, while also displaying a high prevalence of MDR.
Collapse
|
6
|
Abed AH, Hegazy EF, Omar SA, Abd El-Baky RM, El-Beih AA, Al-Emam A, Menshawy AMS, Khalifa E. Carvacrol Essential Oil: A Natural Antibiotic against Zoonotic Multidrug-Resistant Staphylococcus Species Isolated from Diseased Livestock and Humans. Antibiotics (Basel) 2021; 10:1328. [PMID: 34827266 PMCID: PMC8614821 DOI: 10.3390/antibiotics10111328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus species cause diseases in animals and humans. The prevalence and antimicrobial profiles of Staphylococcus spp. in animals and human samples in the Minya Governorate, Egypt, were determined, and resistance- and virulence-associated genes were observed in multidrug-resistant (MDR) isolates. Moreover, the antibacterial effect of carvacrol essential oil (EO) on the MDR isolates was studied. A total of 216 samples were aseptically collected from subclinically mastitic cow's milk (n = 100), sheep abscesses (n = 25) and humans (n = 91). Out of 216 samples, a total of 154 single Staphylococcus species (71.3%) were isolated. The most frequent bacterial isolates were S. aureus (43%), followed by S. schleiferi (25%), S. intermedius (12%), S. xylosus (12%), S. haemolyticus (4.5%), S. epidermidis (2%) and S. aurecularis (1%). Haemolytic activity and biofilm production were detected in 77 and 47% of isolates, respectively. Antimicrobial susceptibility testing showed a high degree of resistance to the most commonly used antimicrobials in human and veterinary practices. The mecA, vanA, vanC1 and ermC resistance genes were detected in 93, 42, 83 and 13% of isolates, respectively. Moreover, hla, icaA and icaD virulence genes were detected in 50, 75 and 78% of isolates, respectively. Carvacrol effectively inhibited the growth of all tested isolates at concentrations of 0.1, 0.05 and 0.04% while a concentration of 0.03% inhibited 75% of isolates. Interestingly, some phenotypic changes were observed upon treatment with a carvacrol oil concentration of 0.03%. All the treated MDR Staphylococcus isolates changed from multidrug resistant to either susceptible or intermediately susceptible to 2-3 antimicrobials more than parental bacterial isolates. Real-time PCR was applied for the detection of the differential expression of mecA and vanC1 genes before and after treatment with carvacrol which revealed a mild reduction in both genes' expression after treatment. Staphylococcus spp. Containing MDR genes are more likely to spread between humans and animals. From these results, carvacrol EO is a promising natural alternative to conventional antimicrobials for pathogens impacting human health and agriculture due to its potential antimicrobial effect on MDR pathogens; even in sub-lethal doses, carvacrol EO can affect their phenotypic properties and genes' expression.
Collapse
Affiliation(s)
- Ahmed H. Abed
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Esraa F. Hegazy
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Sherif A. Omar
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed A. El-Beih
- Chemistry of Natural & Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. S. Menshawy
- Department of Veterinary Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; or
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt;
| |
Collapse
|
7
|
Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021; 9:microorganisms9061175. [PMID: 34072543 PMCID: PMC8229104 DOI: 10.3390/microorganisms9061175] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3’)-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society.
Collapse
|
8
|
Vudhya Gowrisankar Y, Manne Mudhu S, Pasupuleti SK, Suthi S, Chaudhury A, Sarma PVGK. Staphylococcus aureus grown in anaerobic conditions exhibits elevated glutamine biosynthesis and biofilm units. Can J Microbiol 2020; 67:323-331. [PMID: 33136443 DOI: 10.1139/cjm-2020-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous spread of Staphylococcus aureus infections through biofilms is a major concern in hospital-acquired infections. Biofilm formation by S. aureus on any surface is facilitated by adjusting its redox status. This organism is a facultative anaerobe shift more towards reductive conditions by enhancing nitrogen metabolism where glutamine synthesis plays a key role. Glutamine is synthesized by glutamine synthetase (GS) encoded by the glnA gene. The gene was amplified by PCR from the chromosomal DNA of S. aureus, sequenced (HQ329146.1), and cloned. The pure recombinant GS exhibited Km of 11.06 ± 0.05 mmol·L-1 for glutamate and 2.4 ± 0.03 mmol·L-1 for ATP. The glnA gene sequence showed a high degree of variability with its human counterpart, while it was highly conserved in bacteria. Structural analysis revealed that the GS structure of S. aureus showed close homology with other Gram-positive bacteria and exhibited a high degree of variation with Escherichia coli GS. In the present study, we observed the increased presence of GS activity in multidrug-resistant strains of S. aureus with elevated biofilm units, grown in brain heart infusion broth; among them methicillin-resistant strains S. aureus LMV 3, 4, and 5 showed higher biofilm units. All these results explain the important role of glutamine biosynthesis with elevated biofilm units in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Yugandhar Vudhya Gowrisankar
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan (Republic of China)
| | - Sunitha Manne Mudhu
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Santhosh Kumar Pasupuleti
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Abhijit Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | | |
Collapse
|
9
|
Gajewska J, Chajęcka-Wierzchowska W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow's Milk. Pathogens 2020; 9:pathogens9080654. [PMID: 32823918 PMCID: PMC7460418 DOI: 10.3390/pathogens9080654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
The capacity for biofilm formation is one of the crucial factors of staphylococcal virulence. The occurrence of biofilm-forming staphylococci in raw milk may result in disturbances in technological processes in dairy factories as well as the contamination of finished food products. Therefore, this study aimed to determine the prevalence and characteristics of staphylococcal biofilm formation in raw milk samples and to explore the genetic background associated with biofilm formation in those isolates. The material subjected to testing included 30 cow’s milk samples acquired from farms in the central part of Poland. A total of 54 staphylococcal strains were isolated from the samples, of which 42 were classified as coagulase-negative (CoNS) staphylococci belonging to the following species: S. haemolyticus, S. simulans, S. warneri, S. chromogenes, S. hominis, S. sciuri, S. capitis, S. xylosus and S. saprophyticus, while 12 were classified as S. aureus. The study examined the isolates’ capacity for biofilm formation and the staphylococcal capacity for slime production and determined the presence of genetic determinants responsible for biofilm formation, i.e., the icaA, icaD, bap and eno and, additionally, among coagulase-negative staphylococci, i.e., the aap, bhp, fbe, embP and atlE. Each tested isolate exhibited the capacity for biofilm formation, of which most of them (79.6%) were capable of forming a strong biofilm, while 5.6% formed a moderate biofilm, and 14.8% a weak biofilm. A capacity for slime production was demonstrated in 51.9% isolates. Most of the tested staphylococcal strains (90.7%) had at least one of the tested genes. Nearly half (47.6%) of the CoNS had the eno gene, while for S. aureus, the eno gene was demonstrated in 58.3% isolates. The frequency of the bap gene occurrence was 23.8% and 25% in CoNS strains and S. aureus, respectively. The fbe gene was demonstrated in only three CoNS isolates. The presence of the icaA was only demonstrated in CoNS strains (24.1%), while the icaD was found in both CoNS strains (21.4%) and S. aureus (100%). Among the CoNS, the presence of the embP (16.7%), aap (28.6%) and atlE (23.8%) was demonstrated as well. The obtained study results indicate that bacteria of the Staphylococcus spp. genus have a strong potential to form a biofilm, which may pose a hazard to consumer health.
Collapse
|
10
|
Cruzado-Bravo MLM, Silva NCC, Rodrigues MX, Silva GOE, Porto E, Sturion GL. Phenotypic and genotypic characterization of Staphylococcus spp. isolated from mastitis milk and cheese processing: Study of adherence and biofilm formation. Food Res Int 2019; 122:450-460. [PMID: 31229099 DOI: 10.1016/j.foodres.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
Abstract
The aim of this study was to identify the phenotypic and genotypic profiles of Staphylococcus spp. isolated from mastitis milk and cheese processing plant.To evaluate the biofilm production of wild-type strains on contact surfaces by testing different factors through adhered cells and biofilm quantifications, finally, these biofilms were observed by Scanning Electron Microscopy (SEM). Congo red agar (CRA) plate method was used to identify slime production by strains. Screening of genes encoding adhesion factors and biofilm formation was carried out using PCR. After strains selection, adhesion and biofilm assays were designed testing different times (12, 48, 96 h), strains (n = 13), contact surfaces (stainless steel and polypropylene), and temperatures (5 °C and 25 °C); and then, bacterial count and crystal violet staining were conducted. Relative frequencies of positive on CRA and genes presence were determined, and Friedman test was applied for bacterial counts and OD values. Additionally, significant factors (P ≤ .05) were subjected to multiple comparisons using the Nemenyi test. The slime production in CRA was observed by visual inspection in 38.7% of strains. A large distribution of genes was described among strains, implying a high variability of genotypic profiles. Moreover, relative frequencies of CRA positive and gene presence were described. The developed assay showed that the strain, temperature, contact surface, were significant for both variables. The SEM corroborated the findings, showing greater biofilm formation on stainless steel at 25 °C. Thus, it is essential to highlight the importance of temperature control and material with low superficial energy to avoid biofilm formation by staphylococci.
Collapse
Affiliation(s)
- M L M Cruzado-Bravo
- Department of Agroindustry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo, 13418-260 Piracicaba, SP, Brazil.
| | - Nathália Cristina Cirone Silva
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
| | - Marjory Xavier Rodrigues
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 14853 Ithaca, New York, United States
| | - Gabriela Oliveira E Silva
- Technology and Inspection of Products of Animal, Origin Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ernani Porto
- Department of Agroindustry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo, 13418-260 Piracicaba, SP, Brazil
| | - Gilma Lucazechi Sturion
- Department of Agroindustry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo, 13418-260 Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Vasileiou N, Chatzopoulos D, Gougoulis D, Sarrou S, Katsafadou A, Spyrou V, Mavrogianni V, Petinaki E, Fthenakis G. Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Vet Microbiol 2018; 224:93-99. [DOI: 10.1016/j.vetmic.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
|
12
|
Quantitative Expression Analysis of SpA, FnbA and Rsp Genes in Staphylococcus aureus: Actively Associated in the Formation of Biofilms. Curr Microbiol 2017; 74:1394-1403. [DOI: 10.1007/s00284-017-1331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
13
|
El-Razik KAA, Arafa AA, Hedia RH, Ibrahim ES. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt. Vet World 2017; 10:702-710. [PMID: 28717325 PMCID: PMC5499090 DOI: 10.14202/vetworld.2017.702-710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
Aim:: This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes’ milk in Egypt. Materials and Methods: :: A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline (tet) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis. Results:: Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes’ milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri, Staphylococcus hyicus, Staphylococcus lugdunensis, and Staphylococcus simulans. Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease (nuc) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes (tetK, tetL, tetM, and tetO) was detected by multiplex PCR. All isolates were negative for tetL, M, and O genes while 14 (50%) CNS isolates were positive for tetK gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tetK gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp. Conclusion:: CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore.
Collapse
Affiliation(s)
- K A Abd El-Razik
- Department of Animal Reproduction, Veterinary Division, National Research Center, Dokki, Giza, Egypt
| | - A A Arafa
- Department of Microbiology and Immunology, Veterinary Division, National Research Center, Dokki, Giza, Egypt
| | - R H Hedia
- Department of Microbiology and Immunology, Veterinary Division, National Research Center, Dokki, Giza, Egypt
| | - E S Ibrahim
- Department of Microbiology and Immunology, Veterinary Division, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
14
|
Ribič U, Klančnik A, Jeršek B. Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. J Appl Microbiol 2017; 122:1186-1196. [PMID: 28231617 DOI: 10.1111/jam.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
AIMS The purpose of this study was the genotypic and phenotypic characterization of 57 strains of Staphylococcus epidermidis isolated from cleanroom environments, based on their biofilm formation and antimicrobial resistance profiles. METHODS AND RESULTS Biofilm formation was investigated using real-time PCR (icaA, aap, bhp genes), the Congo red agar method and the crystal violet assay. The majority of the strains (59·7%; 34/57) did not form biofilms according to the crystal violet assay, although the biofilm-associated genes were present in 94·7% (54/57) of the strains. Of the biofilm formers (40·4%; 23/57), 39·1% (9/23) have been identified as strong biofilm formers (>4× crystal violet absorbance cut-off). Resistance to a commercial disinfectant and its quaternary ammonium active component, didecyl-dimethyl-ammonium chloride (DDAC), was determined according to minimum inhibitory concentrations (MICs) and the presence of the qac (quaternary ammonium compound) genes. More than 95% (55/57) of the Staph. epidermidis strains had the qacA/B and qacC genes, but not the other qac genes. The MICs for the disinfectant and DDAC varied among the Staph. epidermidis strains, although none were resistant. CONCLUSIONS Although 59·6% of the Staph. epidermidis strains did not form biofilms and none were resistant to DDAC, more than 94% had the genetic basis for development of resistance to quaternary ammonium compounds, and among them at least 14·0% (8/57) might represent a high risk to cleanroom hygiene as strong biofim formers with qacA/B and qacC genes. SIGNIFICANCE AND IMPACT OF THE STUDY To assure controlled cleanroom environments, bacterial strains isolated from cleanroom environments need to be characterized regularly using several investigative methods.
Collapse
Affiliation(s)
- U Ribič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - A Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - B Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Detection of Biofilm Production Capability and icaA/D Genes Among Staphylococci Isolates from Shiraz, Iran. Jundishapur J Microbiol 2016. [DOI: 10.5812/jjm.41431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Szczuka E, Jabłońska L, Kaznowski A. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. J Med Microbiol 2016; 65:1405-1413. [PMID: 27902368 DOI: 10.1099/jmm.0.000372] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Lucyna Jabłońska
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Osman KM, Amer AM, Badr JM, Helmy NM, Elhelw RA, Orabi A, Bakry M, Saad ASA. Antimicrobial Resistance, Biofilm Formation and mecA Characterization of Methicillin-Susceptible S. aureus and Non-S. aureus of Beef Meat Origin in Egypt. Front Microbiol 2016; 7:222. [PMID: 26973606 PMCID: PMC4770614 DOI: 10.3389/fmicb.2016.00222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which could be a source of perilous S. aureus for the human community.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Aziza M Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Jihan M Badr
- Department of Poultry Diseases, Animal Health Research Institute Cairo, Egypt
| | - Nashwa M Helmy
- Departments of Biotechnology, Animal Health Research Institute Giza, Egypt
| | - Rehab A Elhelw
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Magdy Bakry
- Department of Microbiology, National Research Center Cairo, Egypt
| | - Aalaa S A Saad
- Department of Poultry Diseases, Animal Health Research Institute Cairo, Egypt
| |
Collapse
|
18
|
Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI. Intrigues of biofilm: A perspective in veterinary medicine. Vet World 2016; 9:12-8. [PMID: 27051178 PMCID: PMC4819343 DOI: 10.14202/vetworld.2016.12-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/19/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022] Open
Abstract
Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and humans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.
Collapse
Affiliation(s)
- Umar Faruk Abdullahi
- Department of Postgraduate, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, University of Maiduguri, Maiduguri, Nigeria
| | - Anas Mu’azu
- Department of Microbiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Sani Aliyu
- Department of Microbiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Maryam Ibrahim Umar
- Department of Postgraduate, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| |
Collapse
|