1
|
Bartalucci C, Giacobbe DR, Vena A, Bassetti M. Empirical Therapy for Invasive Candidiasis in Critically Ill Patients. CURRENT FUNGAL INFECTION REPORTS 2024; 18:136-145. [DOI: 10.1007/s12281-024-00489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of Review
In this narrative review, we discuss recent literature regarding early antifungal therapy in critically ill patients, focusing in particular on the current role of empirical antifungal treatment.
Recent Findings
While the direction of effect in randomized controlled trials (RCTs) exploring efficacy of empirical therapy in intensive care unit (ICU) patients with suspected invasive candidiasis (IC) was most frequently toward a favorable impact of empirical therapy, no formal demonstration of superiority was observed.
Summary
Main results from RCTs seem in contrast with the increased mortality reported from observational studies in case of delayed antifungal therapy in patients with IC, suggesting, in our opinion, that further research is still necessary to better delineate the precise subgroup of ICU patients with suspected IC who may benefit from early antifungal therapy, either early empirical based on risk scores or diagnostic-driven, or a combination of both.
Collapse
|
2
|
Lass-Flörl C, Kanj SS, Govender NP, Thompson GR, Ostrosky-Zeichner L, Govrins MA. Invasive candidiasis. Nat Rev Dis Primers 2024; 10:20. [PMID: 38514673 DOI: 10.1038/s41572-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Invasive candidiasis is an important fungal disease caused by Candida albicans and, increasingly, non-albicans Candida pathogens. Invasive Candida infections originate most frequently from endogenous human reservoirs and are triggered by impaired host defences. Signs and symptoms of invasive candidiasis are non-specific; candidaemia is the most diagnosed manifestation, with disseminated candidiasis affecting single or multiple organs. Diagnosis poses many challenges, and conventional culture techniques are frequently supplemented by non-culture-based assays. The attributable mortality from candidaemia and disseminated infections is ~30%. Fluconazole resistance is a concern for Nakaseomyces glabratus, Candida parapsilosis, and Candida auris and less so in Candida tropicalis infection; acquired echinocandin resistance remains uncommon. The epidemiology of invasive candidiasis varies in different geographical areas and within various patient populations. Risk factors include intensive care unit stay, central venous catheter use, broad-spectrum antibiotics use, abdominal surgery and immune suppression. Early antifungal treatment and central venous catheter removal form the cornerstones to decrease mortality. The landscape of novel therapeutics is growing; however, the application of new drugs requires careful selection of eligible patients as the spectrum of activity is limited to a few fungal species. Unanswered questions and knowledge gaps define future research priorities and a personalized approach to diagnosis and treatment of invasive candidiasis is of paramount importance.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Souha S Kanj
- Infectious Diseases Division, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelesh P Govender
- Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George R Thompson
- UC Davis Health Medical Center, Division of Infectious Diseases, Sacramento, CA, USA
| | | | - Miriam Alisa Govrins
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Hamilton DO, Lambe T, Howard A, Crossey P, Hughes J, Duarte R, Welters ID. Can Beta-D-Glucan testing as part of the diagnostic pathway for Invasive Fungal Infection reduce anti-fungal treatment costs? Med Mycol 2022; 60:6588046. [PMID: 35583234 DOI: 10.1093/mmy/myac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
We performed a cost comparison of the current diagnostic and treatment pathway for invasive fungal infection (IFI) versus a proposed pathway that incorporates Beta-D-Glucan (BDG) testing from the NHS perspective. A fungal pathogen was identified in 58/107 (54.2%) patients treated with systemic anti-fungals in the Critical Care Department. Mean therapy duration was 23 days (standard deviation [SD] = 22 days), and cost was £5590 (SD = £7410) per patient. Implementation of BDG tests in the diagnostic and treatment pathway of patients with suspected IFI could result in a mean saving of £1643 per patient should a result be returned within two days.
Collapse
Affiliation(s)
- David O Hamilton
- Critical Care Department, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tosin Lambe
- Liverpool Reviews and Implementation Group, Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Alexander Howard
- Microbiology Department, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Patricia Crossey
- Critical Care Department, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jennifer Hughes
- Critical Care Department, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Rui Duarte
- Liverpool Reviews and Implementation Group, Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Ingeborg D Welters
- Critical Care Department, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Zakhem AE, Istambouli R, Jabbour JF, Hindy JR, Gharamti A, Kanj SS. Diagnosis and Management of Invasive Candida Infections in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:46-59. [PMID: 35172358 DOI: 10.1055/s-0041-1741009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Invasive candidiasis (IC) has become a serious problem in the intensive care unit patients with an attributable mortality rate that can reach up to 51%. Multiple global surveillance studies have shown an increasing incidence of candidemia. Despite their limited sensitivity (21-71%), cultures remain the gold standard for the diagnosis of IC associated with candidemia. Many adjunct laboratory tests exist to support or rule out the diagnosis, each with its indications and limitations, including procalcitonin, 1,3-β-D-glucan, mannan and anti-mannan antibodies, and Candida albicans germ tube antibody. In addition, polymerase chain reaction-based methods could expedite species identification in positive blood cultures, helping in guiding early empirical antifungal therapy. The management of IC in critically ill patients can be classified into prophylactic, preemptive, empiric, and directed/targeted therapy of a documented infection. There is no consensus concerning the benefit of prophylactic therapy in critically ill patients. While early initiation of appropriate therapy in confirmed IC is an important determinant of survival, the selection of candidates and drug of choice for empirical systemic antifungal therapy is more controversial. The choice of antifungal agents is determined by many factors, including the host, the site of infection, the species of the isolated Candida, and its susceptibility profile. Echinocandins are considered initial first-line therapy agents. Due to the conflicting results of the various studies on the benefit of preemptive therapy for critically ill patients and the lack of robust evidence, the Infectious Diseases Society of America (IDSA) omitted this category from its updated guidelines and the European Society of Intensive Care Medicine (ESICM) and the Critically Ill Patients Study Group of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) do not recommend it.
Collapse
Affiliation(s)
- Aline El Zakhem
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rachid Istambouli
- Leeds and York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | - Jean-Francois Jabbour
- Department of Internal Medicine, Saint George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - Joya-Rita Hindy
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Amal Gharamti
- Department of Internal Medicine, Yale School of Medicine, Waterbury Hospital, Waterbury, Connecticut
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Lau VI, Xie F, Basmaji J, Cook DJ, Fowler R, Kiflen M, Sirotich E, Iansavichene A, Bagshaw SM, Wilcox ME, Lamontagne F, Ferguson N, Rochwerg B. Health-Related Quality-of-Life and Cost Utility Analyses in Critical Care: A Systematic Review. Crit Care Med 2021; 49:575-588. [PMID: 33591013 DOI: 10.1097/ccm.0000000000004851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Cost utility analyses compare the costs and health outcome of interventions, with a denominator of quality-adjusted life year, a generic health utility measure combining both quality and quantity of life. Cost utility analyses are difficult to compare when methods are not standardized. It is unclear how cost utility analyses are measured/reported in critical care and what methodologic challenges cost utility analyses pose in this setting. This may lead to differences precluding cost utility analyses comparisons. Therefore, we performed a systematic review of cost utility analyses conducted in critical care. Our objectives were to understand: 1) methodologic characteristics, 2) how health-related quality-of-life was measured/reported, and 3) what costs were reported/measured. DESIGN Systematic review. DATA SOURCES We systematically searched for cost utility analyses in critical care in MEDLINE, Embase, American College of Physicians Journal Club, CENTRAL, Evidence-Based Medicine Reviews' selected subset of archived versions of UK National Health Service Economic Evaluation Database, Database of Abstracts of Reviews of Effects, and American Economic Association electronic databases from inception to April 30, 2020. SETTING Adult ICUs. PATIENTS Adult critically ill patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 8,926 citations, 80 cost utility analyse studies were eligible. The time horizon most commonly reported was lifetime (59%). For health utility reporting, health-related quality-of-life was infrequently measured (29% reported), with only 5% of studies reporting baseline health-related quality-of-life. Indirect utility measures (generic, preference-based health utility measurement tools) were reported in 85% of studies (majority Euro-quality-of-life-5 Domains, 52%). Methods of estimating health-related quality-of-life were seldom used when the patient was incapacitated: imputation (19%), assigning fixed utilities for incapacitation (19%), and surrogates reporting on behalf of incapacitated patients (5%). For cost utility reporting transparency, separate incremental costs and quality-adjusted life years were both reported in only 76% of studies. Disaggregated quality-adjusted life years (reporting separate health utility and life years) were described in only 34% of studies. CONCLUSIONS We identified deficiencies which warrant recommendations (standardized measurement/reporting of resource use/unit costs/health-related quality-of-life/methodological preferences) for improved design, conduct, and reporting of future cost utility analyses in critical care.
Collapse
Affiliation(s)
- Vincent I Lau
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | - Feng Xie
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | - John Basmaji
- Department of Medicine, Division of Critical Care Medicine, Western University, London, ON, Canada
| | - Deborah J Cook
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert Fowler
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University Health Network, Ontario, ON, Canada
| | - Michel Kiflen
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Emily Sirotich
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | | | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - M Elizabeth Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University Health Network, Ontario, ON, Canada
| | - François Lamontagne
- Centre de Recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Niall Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University Health Network, Ontario, ON, Canada
| | - Bram Rochwerg
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Martin-Loeches I, Antonelli M, Cuenca-Estrella M, Dimopoulos G, Einav S, De Waele JJ, Garnacho-Montero J, Kanj SS, Machado FR, Montravers P, Sakr Y, Sanguinetti M, Timsit JF, Bassetti M. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med 2019; 45:789-805. [PMID: 30911804 DOI: 10.1007/s00134-019-05599-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/09/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The term invasive candidiasis (IC) refers to both bloodstream and deep-seated invasive infections, such as peritonitis, caused by Candida species. Several guidelines on the management of candidemia and invasive infection due to Candida species have recently been published, but none of them focuses specifically on critically ill patients admitted to intensive care units (ICUs). MATERIAL AND METHODS In the absence of available scientific evidence, the resulting recommendations are based solely on epidemiological and clinical evidence in conjunction with expert opinion. The task force used the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach to evaluate the recommendations and assign levels of evidence. The recommendations and their strength were decided by consensus and, if necessary, by vote (modified Delphi process). Descriptive statistics were used to analyze the results of the Delphi process. Statements obtaining > 80% agreement were considered to have achieved consensus. CONCLUSIONS The heterogeneity of this patient population necessitated the creation of a mixed working group comprising experts in clinical microbiology, infectious diseases and intensive care medicine, all chosen on the basis of their expertise in the management of IC and/or research methodology. The working group's main goal was to provide clinicians with clear and practical recommendations to optimize microbiological diagnosis and treatment of IC. The Systemic Inflammation and Sepsis and Infection sections of the European Society of Intensive Care Medicine (ESICM) and the Critically Ill Patients Study Group of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) therefore decided to develop a set of recommendations for application in non-immunocompromised critically ill patients.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland. .,Hospital Clinic, Universidad de Barcelona, CIBERes, Barcelona, Spain.
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - George Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens, Greece
| | - Sharon Einav
- General Intensive Care Unit, Shaare Zedek Medical Centre and the Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jose Garnacho-Montero
- Intensive Care Clinical Unit, Hospital Universitario Virgen Macarena, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Flavia R Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Philippe Montravers
- Paris Diderot, Sorbonne Cite University, and Anaesthesiology and Critical Care Medicine, Bichat-Claude Bernard University Hospital, HUPNSV, AP-HP, INSERM, UMR 1152, Paris, France
| | - Yasser Sakr
- Department of Anesthesiology and Intensive Care, Uniklinikum Jena, Jena, Germany
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Institute of Microbiology, Rome, Italy
| | - Jean-Francois Timsit
- UMR 1137, IAME Inserm/University Paris Diderot, Paris, France.,APHP, Bichat Hospital, Intensive Care Unit, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|