1
|
Koulenti D, Vandana KE, Rello J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr Opin Infect Dis 2023; 36:545-554. [PMID: 37930069 DOI: 10.1097/qco.0000000000000977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW This article aims to review the epidemiology of nonfermenting Gram-negative bacilli (NFGNB) based on recent literature reports, particularly, of the less common, but with emerging clinical significance species. RECENT FINDINGS The reported frequency of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa is increasing, with very significant variability, however, between different countries. Apart from the major NFGNB, that is, A. baumannii and P. aeruginosa, already recognized as of critical importance healthcare risks, several other NFGNB genera have been increasingly associated with diverse severe infections, such as Stenotrophomonas maltophilia, Burkholderia spp., Elizabethkingia spp., Chryseobacterium spp., Achromobacter spp., Alcaligenes spp., Sphingomonas spp., Shewanella spp. and Ralstonia spp., among others. SUMMARY The exploration of the epidemiology, as well as the pathogenic potential of the of the less frequent, but emerging and increasingly reported NFGNB, is crucial, not only for immunocompromised patients, but also for critically ill patients without overt immunosuppression. As we are heading fast towards a postantibiotic era, such information would contribute to the optimal antimicrobial management, that is, providing prompt, appropriate antimicrobial coverage when needed and, at the same time, avoiding overuse and/or inappropriate use of antimicrobial therapy. Also, it would help to better understand their transmission dynamics and to develop effective prevention strategies.
Collapse
Affiliation(s)
- Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kalwaje Eswhara Vandana
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Jordi Rello
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- FOREVA Research Unit, CHU Nîmes, Nîmes, France
| |
Collapse
|
2
|
Adukauskiene D, Ciginskiene A, Adukauskaite A, Koulenti D, Rello J. Clinical Features and Outcomes of VAP Due to Multidrug-Resistant Klebsiella spp.: A Retrospective Study Comparing Monobacterial and Polybacterial Episodes. Antibiotics (Basel) 2023; 12:1056. [PMID: 37370375 DOI: 10.3390/antibiotics12061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
VAP due to multidrug-resistant (MDR) bacteria is a frequent infection among patients in ICUs. Patient characteristics and mortality in mono- and polybacterial cases of VAP may differ. A single-centre, retrospective 3-year study was conducted in the four ICUs of a Lithuanian referral university hospital, aiming to compare both the clinical features and the 60-day ICU all-cause mortality of monobacterial and polybacterial MDR Klebsiella spp. VAP episodes. Of the 86 MDR Klebsiella spp. VAP episodes analyzed, 50 (58.1%) were polybacterial. The 60-day mortality was higher (p < 0.05) in polybacterial episodes: overall (50.0 vs. 27.8%), in the sub-group with less-severe disease (SOFA < 8) at VAP onset (45.5 vs. 15.0%), even with appropriate treatment (41.7 vs. 12.5%), and the sub-group of extended drug-resistant (XDR) Klebsiella spp. (46.4 vs. 17.6%). The ICU mortality (44.0 vs. 22.5%) was also higher in the polybacterial episodes. The monobacterial MDR Klebsiella spp. VAP was associated (p < 0.05) with prior hospitalization (61.1 vs. 40.0%), diabetes mellitus (30.6 vs. 5.8%), obesity (30.6 vs. 4.7%), prior antibiotic therapy (77.8 vs. 52.0%), prior treatment with cephalosporins (66.7 vs. 36.0%), and SOFA cardiovascular ≥ 3 (44.4 vs. 10.0%) at VAP onset. Patients with polybacterial VAP were more likely (p < 0.05) to be comatose (22.2 vs. 52.0%) and had a higher SAPS II score (median [IQR] 45.0 [35.25-51.1] vs. 50.0 [40.5-60.75]) at VAP onset. Polybacterial MDR Klebsiella spp. VAP had distinct demographic and clinical characteristics compared to monobacterial, and was associated with poorer outcomes.
Collapse
Affiliation(s)
- Dalia Adukauskiene
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ausra Ciginskiene
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Adukauskaite
- Department of Cardiology and Angiology, University Hospital of Innsbruck, 6020 Innsbruck, Austria
| | - Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The Univesrity of Queensland, 4029 Brisbane, Australia
| | - Jordi Rello
- Vall d'Hebron Institute of Research, Vall d'Hebron Campus Hospital, 08035 Barcelona, Spain
- Clinical Research, CHU Nîmes, 30900 Nîmes, France
| |
Collapse
|
3
|
Xu R, Tang J, Hadianamrei R, Liu S, Lv S, You R, Pan F, Zhang P, Wang N, Cai Z, Zhao X. Antifungal activity of designed α-helical antimicrobial peptides. Biomater Sci 2023; 11:2845-2859. [PMID: 36857655 DOI: 10.1039/d2bm01797k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Antimicrobial resistance (AMR) has become a major global health concern prompting the quest for new antibiotics with higher efficiency and less proneness to drug resistance. Antimicrobial peptides (AMPs) offer such properties and have therefore gained increasing attention as a new generation of antibiotics to overcome AMR. In an attempt to develop new highly selective and highly efficient antifungal peptides, a sequence (named At1) originating from the natural AMP Ponericin-W1 was used as a lead sequence for rational design of a series of short cationic antifungal peptides named At2-At12. The charge, hydrophobicity, and terminal amino acids of the peptides were modified in a systematic way to investigate the effect of such structural changes on the biological activity of the peptides. Among all the designed peptides, three peptides (coded as At3, At5 and At10) exhibited high antifungal activity without any significant hemolytic activity in human red blood cells. The higher selectivity of these peptides for fungal cells over human cells was further confirmed in cocultures of Candida albicans and human foreskin fibroblasts. These three peptides lacked any hydrophilic residues in their hydrophobic domain, contained lysine residues in their hydrophilic region and had an overall charge of 7+. They also had a higher helical content in microbial membrane mimicking DPPG SUVs than the rest of the peptides. The fungi did not develop any resistance to the designed antifungal peptides even after 25 generations indicating low AMR. At5 was also used in vivo for the treatment of wounds infected with Candida albicans in mice and showed superiority over fluconazole for treating infection and accelerating wound healing. There was an interplay between the hydrophobicity and positive charge density to determine the antifungal activity of the peptides. The results from this study suggest this class of antifungal peptides as promising candidates for antifungal drugs with high efficiency, high biocompatibility and low propensity for drug resistance.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Jing Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Suyu Liu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
4
|
Thakur L, Singh S, Singh R, Kumar A, Angrup A, Kumar N. The potential of 4D's approach in curbing antimicrobial resistance among bacterial pathogens. Expert Rev Anti Infect Ther 2022; 20:1401-1412. [PMID: 36098225 DOI: 10.1080/14787210.2022.2124968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Antibiotics are life-saving drugs but irrational/inappropriate use leads to the emergence of antibiotic-resistant bacterial superbugs, making their treatment extremely challenging. Increasing antimicrobial resistance (AMR) among bacterial pathogens is becoming a serious public health concern globally. If ignorance persists, there would not be any antibiotics available to treat even a common bacterial infection in future. AREA COVERED This article intends to collate and discuss the potential of 4D's (right Drug, Dose, Duration, and De-escalation of therapy) approach to tackle the emerging problem of AMR. For this, we searched PubMed, Google Scholar, Medline, and clinicaltrials.gov databases primarily using keywords 'optimal antibiotic therapy,' 'antimicrobial resistance,' 'higher versus lower dose antibiotic treatment,' 'shorter versus longer duration antibiotic treatment,' 'de-escalation study', and 'antimicrobial stewardship measures' and based on the findings, form and expressed our opinion. EXPERT OPINION More efforts are needed for developing diagnostics for rapid, accurate, point-of-care, and cost-effective pathogen identification and antimicrobial susceptibility testing (AST) to facilitate rational use of antibiotics. Current dosing and duration of therapies also need to be redefined to maximize their impact. Furthermore, de-escalation approaches should be developed and encouraged in the clinic. This altogether will minimize selection pressure on the pathogens and reduce emergence of AMR.
Collapse
Affiliation(s)
- Lovnish Thakur
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Rita Singh
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India
| | - Archana Angrup
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Lupia T, Corcione S, Shbaklo N, Montrucchio G, De Benedetto I, Fornari V, Bosio R, Rizzello B, Mornese Pinna S, Brazzi L, De Rosa FG. Meropenem/Vaborbactam and Cefiderocol as Combination or Monotherapy to Treat Multi-Drug Resistant Gram-Negative Infections: A Regional Cross-Sectional Survey from Piedmont Infectious Disease Unit Network (PIDUN). J Funct Biomater 2022; 13:174. [PMID: 36278643 PMCID: PMC9624317 DOI: 10.3390/jfb13040174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 02/13/2025] Open
Abstract
Meropenem/vaborbactam (MV) and cefiderocol were recently approved by the Food and Drug Administration and European Medicines Agency and are among the most promising antibacterial in treatment regimens against multi-drug resistant (MDR) gram-negative bacilli. A survey with close-ended questions was proposed to infectious disease (ID) and intensive care unit (ICU) physicians of Piedmont and Valle d'Aosta Region's hospitals. The aim was to collect data about habits and prescriptions of cefiderocol and MV. Twenty-three physicians (11 ID specialists and 12 anesthesiologists) in 13 Italian hospitals took part in the survey. Both cefiderocol and MV were mostly used as target therapy after a previous treatment failure and after ID specialist consult. The most frequent MDR pathogen in hospitals was Klebsiella pneumoniae carbapenemase-producing bacteria (KPC), followed by P. aeruginosa and A. baumannii. MDRs were more frequently isolated in ICU. In conclusion, cefiderocol was used in empiric regimens when A.baumannii was suspected, while MV was more used in suspect of KPC. MV and cefiderocol can be the first option in empiric treatment for critically ill patients in settings with high risk of MDR. The treatment should then be followed by rapid de-escalation when microbiological results are available.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Nour Shbaklo
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Giorgia Montrucchio
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anaesthesia, Critical Care and Emergency, Città Della Salute e Della Scienza Hospital, Corso Dogliotti 14, 10126 Turin, Italy
| | - Ilaria De Benedetto
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Valentina Fornari
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Roberta Bosio
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Barbara Rizzello
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anaesthesia, Critical Care and Emergency, Città Della Salute e Della Scienza Hospital, Corso Dogliotti 14, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Golden AR, Adam HJ, Baxter M, Walkty A, Lagacé-Wiens P, Karlowsky JA, Zhanel GG. In Vitro Activity of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacilli Isolated from Patients in Canadian Intensive Care Units. Diagn Microbiol Infect Dis 2020; 97:115012. [PMID: 32081522 DOI: 10.1016/j.diagmicrobio.2020.115012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
The in vitro activity of cefiderocol was evaluated against Gram-negative bacilli isolated from patients in Canadian intensive care units from 2015 to 2017 using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method and interpretive criteria. All 800 isolates of Gram-negative bacilli tested were susceptible to cefiderocol (MIC ≤4 μg/ml), including isolates of ESBL-producing (n=40), AmpC-producing (n=6), and carbapenem-nonsusceptible (n=21) Enterobacterales, carbapenem-nonsusceptible (n=54) and multidrug-resistant (n=29) Pseudomonas aeruginosa, Stenotrophomonas maltophilia (n=66), and Acinetobacter baumannii (n=11).
Collapse
Affiliation(s)
- Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada.
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada; Department of Clinical Microbiology, Shared Health Manitoba. MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada; Department of Clinical Microbiology, Shared Health Manitoba. MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada; Department of Clinical Microbiology, Shared Health Manitoba. MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada; Department of Clinical Microbiology, Shared Health Manitoba. MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, R3E 3P5, Canada
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Antimicrobial resistance (AMR) is increasing in ICUs around the world, but the prevalence is variable. We will review recent literature and try to answer the question whether this is a myth or a new reality, as well as discuss challenges and potential solutions. RECENT FINDINGS AMR is diverse, and currently Gram-negative multidrug-resistant organisms (MDROs) are the main challenge in ICUs worldwide. Geographical variation in prevalence of MDROs is substantial, and local epidemiology should be considered to assess the current threat of AMR. ICU patients are at a high risk of infection with MDRO because often multiple risk factors are present. Solutions should focus on reducing the risk of cross-transmission in the ICU through strict infection prevention and control practices and reducing exposure to antimicrobials as the major contributor to the development of AMR. SUMMARY AMR is a reality in most ICUs around the world, but the extent of the problem is clearly highly variable. Infection prevention and control as well as appropriate antimicrobial use are the cornerstones to turn the tide.
Collapse
|
8
|
Lepape A, Jean A, De Waele J, Friggeri A, Savey A, Vanhems P, Gustin MP, Monnet DL, Garnacho-Montero J, Kohlenberg A. European intensive care physicians' experience of infections due to antibiotic-resistant bacteria. Antimicrob Resist Infect Control 2020; 9:1. [PMID: 31908772 PMCID: PMC6941296 DOI: 10.1186/s13756-019-0662-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Antimicrobial resistance (AMR) compromises the treatment of patients with serious infections in intensive care units (ICUs), and intensive care physicians are increasingly facing patients with bacterial infections with limited or no adequate therapeutic options. A survey was conducted to assess the intensive care physicians' perception of the AMR situation in the European Union/European Economic Area (EU/EEA). Methods Between May and July 2017, physicians working in European ICUs were invited to complete an online questionnaire hosted by the European Society of Intensive Care Medicine. The survey included 20 questions on hospital and ICU characteristics, frequency of infections with multidrug-resistant (MDR) bacteria and relevance of AMR in the respondent's ICU, management of antimicrobial treatment as well as the use of last-line antibiotics in the six months preceding the survey. For the analysis of regional differences, EU/EEA countries were grouped into the four sub-regions of Eastern, Northern, Southern and Western Europe. Results Overall, 1062 responses from four European sub-regions were analysed. Infections with MDR bacteria in their ICU were rated as a major problem by 257 (24.2%), moderate problem by 360 (33.9%) and minor problem by 391 (36.8%) respondents. Third-generation cephalosporin-resistant Enterobacteriaceae were the most frequently encountered MDR bacteria followed by, in order of decreasing frequency, meticillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Pseudomonas aeruginosa and vancomycin-resistant enterococci. Perception of the relevance of the AMR problem and the frequency of specific MDR bacteria varied by European sub-region. Bacteria resistant to all or almost all available antibiotics were encountered by 132 (12.4%) respondents. Many physicians reported not having access to specific last-line antibiotics. Conclusions The percentage of European ICU physicians perceiving AMR as a substantial problem in their ICU is high with variation by sub-region in line with epidemiological studies. The reports of bacteria resistant to almost all available antibiotics and the limited availability of last-line antibiotics in ICUs in the EU/EEA are of concern.
Collapse
Affiliation(s)
- Alain Lepape
- 1Clinical Research Unit, Critical care, Lyon-Sud University Hospital, Hospices Civils de Lyon, Lyon, France.,2Infection Section, European Society of Intensive Care Medicine, Brussels, Belgium.,3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Astrid Jean
- 1Clinical Research Unit, Critical care, Lyon-Sud University Hospital, Hospices Civils de Lyon, Lyon, France.,3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jan De Waele
- 2Infection Section, European Society of Intensive Care Medicine, Brussels, Belgium.,4Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Friggeri
- 1Clinical Research Unit, Critical care, Lyon-Sud University Hospital, Hospices Civils de Lyon, Lyon, France.,3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Anne Savey
- 3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Philippe Vanhems
- 3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Marie Paule Gustin
- 3Epidémiologie et Santé Internationale, Centre International de Recherche en Infectiologie (CIRI). Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Dominique L Monnet
- 5European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - José Garnacho-Montero
- 2Infection Section, European Society of Intensive Care Medicine, Brussels, Belgium.,6Intensive Care Clinical Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Anke Kohlenberg
- 5European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| |
Collapse
|
9
|
Antimicrobial Stewardship in Hematological Patients at the intensive care unit: a global cross-sectional survey from the Nine-i Investigators Network. Eur J Clin Microbiol Infect Dis 2019; 39:385-392. [PMID: 31707508 DOI: 10.1007/s10096-019-03736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/03/2019] [Indexed: 01/05/2023]
Abstract
A global cross-sectional survey was performed to gather data on the current treatment of infections caused by multidrug-resistant (MDR) bacteria among hematological patients admitted to ICUs worldwide. The survey was performed in April 2019 using an electronic platform (SurveyMonkey®) being distributed among 83 physicians and completed by 48 (57.8%) responders. ESBL Enterobacteriaceae, carbapenem-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa were the main concerns. Previous MDR infection (34% of responders), MDR colonization (20%) and previous antibiotic exposure within the last 3 months (20.5%) were considered the most relevant risk factors of bloodstream infection (BSI) due to MDR bacteria. In 48.8% of the ICUs, there was no antimicrobial stewardship (AMS) team focused on hematological patients. Updates on local epidemiology of MDR pathogens were provided in 98% of the centers, using phone or verbal communications (56.1% and 53.7%, respectively). In presence of febrile neutropenia, initial therapy consisted of anti-Gram-negative plus anti-Gram-positive antibiotics for 41% of participants. Antibiotic de-escalation and/or discontinuation of therapy were considered as a promising strategy for the prevention of MDR development (32.4%). Factors associated with antibiotic de-escalation were clinical improvement (43.6%) and neutrophil count recovery (12.8%). Infectious Disease consultation and AMS interventions were not determining factors for de-escalation decisions (more than 50% of responders). Infection control and educational programs were valued as necessary measures for implementation by ICU practitioners. These findings should guide future efforts on collaborative team working, improving compliance with adequate treatment protocols, implementing antimicrobial stewardship programs in critically ill hematological patients, and educational activities.
Collapse
|
10
|
Rello J, Parisella FR, Perez A. Alternatives to antibiotics in an era of difficult-to-treat resistance: new insights. Expert Rev Clin Pharmacol 2019; 12:635-642. [PMID: 31092053 DOI: 10.1080/17512433.2019.1619454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: The rise of antibiotic resistance, the limited efficacy and the adverse events associated with antibiotics have urged the development of alternative measures to treat bacterial infections. Novel therapies which are pathogen specific and are safer to the healthy microbiome are being developed. Areas covered: This manuscript provides a compact overview of the feasibility and clinical impact of the latest novel therapies, with a focus on monoclonal antibodies (mAbs), vaccines, stem cells, bacteriophages, and liposomes. This is a follow-up of a previous manuscript (doi: 10.1080/17512433.2016.1241141); a database search (PubMed, EMBASE, Cochrane) was used to identify recently published literature (from January 2016) which was not covered in the previous publication. Expert opinion: Among non-traditional agents, monoclonal antibodies have not been as successful as in other therapeutic areas. In particular many are developed to prevent hospital-acquired infections caused by S. aureus or P. aeruginosa and, so far, results have been overall disappointing. Stem cells and bacteriophages still have a long way to go. Vaccines are always desirable to prevent infections but again there is a lack of confirmatory results. Broad spectrum liposomes have shown promising results in treating severely infected patients and could be game changers in patient management.
Collapse
Affiliation(s)
- Jordi Rello
- a Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain & Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES) , Instituto Salud Carlos III , Barcelona , Spain.,b Centrode Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES) , Instituto Salud Carlos III , Barcelona , Spain
| | - Francesca Romana Parisella
- c UQ Centre for Clinical Research, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Antonio Perez
- d Medical Department , Combioxin SA , Geneve , Switzerland
| |
Collapse
|
11
|
Current Issues and Perspectives in Patients with Possible Sepsis at Emergency Departments. Antibiotics (Basel) 2019. [PMID: 31067656 DOI: 10.3390/antibiotics] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the area of Emergency Room (ER), many patients present criteria compatible with a SIRS, but only some of them have an associated infection. The new definition of sepsis by the European Society of Intensive Care Medicine and the Society of Critical Care Medicine (2016), revolutionizes precedent criteria, overcoming the concept of SIRS and clearly distinguishing the infection with the patient's physiological response from the symptoms of sepsis. Another fundamental change concerns the recognition method: The use of SOFA (Sequential-Sepsis Related-Organ Failure Assessment Score) as reference score for organ damage assessment. Also, the use of the qSOFA is based on the use of three objective parameters: Altered level of consciousness (GCS <15 or AVPU), systolic blood pressure ≤ 100 mmHg, and respiratory rate ≥ 22/min. If patients have at least two of these altered parameters in association with an infection, then there is the suspicion of sepsis. In these patients the risk of death is higher, and it is necessary to implement the appropriate management protocols, indeed the hospital mortality rate of these patients exceeds 40%. Patients with septic shock can be identified by the association of the clinical symptoms of sepsis with persistent hypotension, which requires vasopressors to maintain a MAP of 65 mmHg, and serum lactate levels >18 mg/dL in despite of an adequate volume resuscitation. Then, patient first management is mainly based on: (1) Recognition of the potentially septic patient (sepsis protocol-qSOFA); (2) Laboratory investigations; (3) Empirical antibiotic therapy in patients with sepsis and septic shock. With this in mind, the authors discuss the most important aspects of the sepsis in both adults and infants, and also consider the possible treatment according current guidelines. In addition, the possible role of some nutraceuticals as supportive therapy in septic patient is also discussed.
Collapse
|
12
|
Current Issues and Perspectives in Patients with Possible Sepsis at Emergency Departments. Antibiotics (Basel) 2019; 8:antibiotics8020056. [PMID: 31067656 PMCID: PMC6627621 DOI: 10.3390/antibiotics8020056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
In the area of Emergency Room (ER), many patients present criteria compatible with a SIRS, but only some of them have an associated infection. The new definition of sepsis by the European Society of Intensive Care Medicine and the Society of Critical Care Medicine (2016), revolutionizes precedent criteria, overcoming the concept of SIRS and clearly distinguishing the infection with the patient’s physiological response from the symptoms of sepsis. Another fundamental change concerns the recognition method: The use of SOFA (Sequential-Sepsis Related-Organ Failure Assessment Score) as reference score for organ damage assessment. Also, the use of the qSOFA is based on the use of three objective parameters: Altered level of consciousness (GCS <15 or AVPU), systolic blood pressure ≤ 100 mmHg, and respiratory rate ≥ 22/min. If patients have at least two of these altered parameters in association with an infection, then there is the suspicion of sepsis. In these patients the risk of death is higher, and it is necessary to implement the appropriate management protocols, indeed the hospital mortality rate of these patients exceeds 40%. Patients with septic shock can be identified by the association of the clinical symptoms of sepsis with persistent hypotension, which requires vasopressors to maintain a MAP of 65 mmHg, and serum lactate levels >18 mg/dL in despite of an adequate volume resuscitation. Then, patient first management is mainly based on: (1) Recognition of the potentially septic patient (sepsis protocol-qSOFA); (2) Laboratory investigations; (3) Empirical antibiotic therapy in patients with sepsis and septic shock. With this in mind, the authors discuss the most important aspects of the sepsis in both adults and infants, and also consider the possible treatment according current guidelines. In addition, the possible role of some nutraceuticals as supportive therapy in septic patient is also discussed.
Collapse
|