1
|
Archambault M, Vergneau-Grosset C, Gara-Boivin C, Mélançon V, Binning SA. Testing non-lethal techniques for endoparasite detection and sex determination in pumpkinseed sunfish (Lepomis gibbosus). JOURNAL OF FISH BIOLOGY 2025. [PMID: 40197739 DOI: 10.1111/jfb.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Developing non-lethal techniques to estimate parasite infection is critical for studying disease ecology in wild animals. We tested the effectiveness of coelomic ultrasonographic examination and plasma enzyme markers to detect liver infection with bass tapeworms Proteocephalus ambloplitis (Leidy 1887) as well as the effectiveness of ultrasound in predicting fish sex based on gonad imaging ante mortem in two populations of pumpkinseed sunfish Lepomis gibbosus (L. 1758). We also conducted cytopathological and histopathological analyses on a small subset of fish to investigate the potential for these techniques to detect signs of infection and liver disease. We found that fish sex was correctly identified by ultrasound in 87% of fish screened. There was no statistically significant relationship between parasite density and plasma enzyme concentration in infected fish. However, there were clinical differences between individuals from uninfected and infected populations in the enzymes creatine kinase and alanine transaminase. Histopathology and cytopathology assays confirmed the presence of macrophages and clear signs of inflammation within the liver of infected fish. Our results demonstrate that ultrasound, while useful for sex determination, was not effective in detecting infection in small species like sunfish. However, techniques such as blood analysis and potentially cytopathology are promising tools for parasitic detection in L. gibbosus and warrant further investigation, especially for use in other larger species.
Collapse
Affiliation(s)
- Matthew Archambault
- Faculté des Arts et des Sciences, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Claire Vergneau-Grosset
- Faculté de Médecine Vétérinaire, Département de Sciences Clinique, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Ressources Aquatiques Québec, Université du Québec À Rimouski, Rimouski, Québec, Canada
| | - Carolyn Gara-Boivin
- Faculté de Médecine Vétérinaire, Département de Pathologie et de Médecine de Laboratoire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Vincent Mélançon
- Faculté des Arts et des Sciences, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Sandra A Binning
- Faculté des Arts et des Sciences, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
- Ressources Aquatiques Québec, Université du Québec À Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
2
|
Toft K, Honoré ML, Ripley N, Nielsen MK, Mardahl M, Fromm B, Hedberg-Alm Y, Tydén E, Nielsen LN, Nejsum P, Thamsborg SM, Cirera S, Pihl TH. Profiling host- and parasite-derived miRNAs associated with Strongylus vulgaris infection in horses. Vet Parasitol 2025; 334:110379. [PMID: 39721258 DOI: 10.1016/j.vetpar.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The equine bloodworm, Strongylus vulgaris, is a common and highly pathogenic parasite in horses due to its migratory life cycle involving the intestinal arteries. Current diagnostic techniques cannot detect the prepatent migrating stages of S. vulgaris, highlighting the need for new biomarkers. Parasites release microRNAs (miRNAs) into their environment, which could potentially be detectable in host blood samples. Additionally, host miRNA expression patterns may change in response to infection. This study aimed to identify miRNAs associated with S. vulgaris infection by profiling the horse's miRNA response in the larval predilection site, the Cranial Mesenteric Artery (CMA) and examining the circulating parasite and horse-derived miRNAs in plasma of S. vulgaris-infected horses. Plasma samples were collected from 27 horses naturally infected with S. vulgaris and 28 uninfected horses. Arterial tissue samples from the CMA and Aorta were collected from a subset (n = 12) of the infected horses. Small RNA sequencing (small RNAseq) of a subset of the plasma samples (n = 12) identified miRNAs of interest, followed by quantitative real-time PCR (qPCR) evaluation of selected miRNAs in plasma from a larger cohort of horses. Small RNAseq detected 138 parasite-derived and 533 horse-derived miRNAs in the plasma samples. No difference in parasite-derived miRNA abundance was found between the infected and uninfected horses, but 140 horse-derived miRNAs were significantly differentially abundant between the two groups. When evaluated by qPCR, none of the selected parasite-derived miRNAs were detectable in plasma, but seven horse-derived miRNAs were confirmed differentially abundant in plasma between the two groups. Seven horse-derived miRNAs were differentially expressed in CMA tissue affected by migrating S. vulgaris compared with unaffected aortic tissue, with Eca-Mir-223-3p (Log2FC: 4.74) and Eca-Mir-140-3p (Log2FC: -3.64) being most differentially expressed. A receiver operating characteristic curve analysis suggested that Eca-Mir-486-5p and Eca-Mir-140-3p had the best diagnostic performance for distinguishing between infected and uninfected horses, with areas under the curve (AUC) of 0.78 and 0.77, respectively. Notably, Eca-Mir-140-3p was associated with age, and correcting for interaction with age increased the AUC to 0.96. In conclusion, several horse-derived miRNAs were associated with S. vulgaris infection and could differentiate between infected and uninfected horses based on their plasma abundance. However, the levels of these miRNAs were influenced by other factors (i.e age, breed), complicating their use as biomarkers. Parasite-derived miRNA abundance did not differ between S. vulgaris infected horses and those infected with other parasites using small RNAseq and were below detection limits of qPCR.
Collapse
Affiliation(s)
- Katrine Toft
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Louise Honoré
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nichol Ripley
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | | | - Bastian Fromm
- The Arctic University Museum of Norway, UiT, the Arctic University of NorwayTromsø, Norway
| | - Ylva Hedberg-Alm
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Science and Veterinary Public Health, Parasitology Unit, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Holberg Pihl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Toft K, Honoré ML, Ripley NE, Nielsen MK, Fromm B, Mardahl M, Nielsen LN, Nejsum P, Thamsborg SM, Cirera S, Pihl TH. The microRNAome of Strongylus vulgaris larvae and their excretory/secretory products with identification of parasite-derived microRNAs in horse arterial tissue. Int J Parasitol 2025; 55:45-58. [PMID: 39510492 DOI: 10.1016/j.ijpara.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/26/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The equine bloodworm, Strongylus vulgaris, is a highly pathogenic parasite causing potentially fatal vascular and intestinal damage. Parasites express and release microRNAs (miRNAs) for internal regulation and to modulate host immunity. The complete set of miRNAs expressed by S. vulgaris (the S. vulgaris miRNAome) remains unannotated and the aim of this study was to annotate the miRNAome of L4 and L5 stages of S. vulgaris, and to examine differences in miRNA abundance between larval stages and sexes. Furthermore, we aimed to determine if miRNAs were detectable in excretory/secretory products (ESPs) from larvae and in arterial tissue from their predilection site, the cranial mesenteric artery (CMA). Larvae were collected from naturally infected foals, and categorized by sex and stage. A subset of larvae was snap-frozen, while those remaining were incubated and the (ESPs) collected. Arterial tissue samples were collected from the CMA. Small RNA sequencing, followed by a custom bioinformatic pipeline, was used for annotation. We identified 142 S. vulgaris miRNAs in larvae and 136 in ESPs. Significant differences in miRNA abundance were observed between larvae and ESPs, and between L5 females (L5Fs) and L5 males (L5Ms), L4s and L5Fs, and L4s and L5Ms. No differences were found between L4s and L5s overall. In ESPs, several miRNAs were differentially abundant across all groups. Validation through quantitative real-time PCR (qPCR) detected selected miRNAs and their differential abundance in larvae and ESPs. One parasite-derived miRNA was detected in some of the horse arterial tissue samples but at very low levels. This study provided the first annotation of the S. vulgaris miRNAome. Most of the annotated larval miRNAs were also detectable in ESPs, and differences in miRNA abundance between sexes were found for larvae, and between sexes and stages for ESPs. Parasite-derived miRNAs were, however, not consistently detectable in the surrounding host arterial tissue.
Collapse
Affiliation(s)
- Katrine Toft
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Louise Honoré
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nichol E Ripley
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Holberg Pihl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Yang Y, Chen Y, Zheng Z, Lin L, Chen X, Yang C, Zhong D, Wu H, Xiong Z, Liu S, Wang T, Yang Y, Du A, Ma G. Alterations of plasma circulating microRNAs in BALB/c mice with Toxocara canis visceral and cerebral larva migrans. Parasit Vectors 2024; 17:256. [PMID: 38867315 PMCID: PMC11167859 DOI: 10.1186/s13071-024-06327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Human toxocariasis is a neglected parasitic disease characterised by the syndromes visceral, cerebral, and ocular larva migrans. This disease is caused by the migrating larvae of Toxocara roundworms from dogs and cats, affecting 1.4 billion people globally. Via extracellular vesicles (EVs), microRNAs have been demonstrated to play roles in host-parasite interactions and proposed as circulating biomarkers for the diagnosis and follow-up of parasitic diseases. METHODS Small RNA-seq was conducted to identify miRNAs in the infective larvae of T. canis and plasma EV-containing preparations of infected BALB/c mice. Differential expression analysis and target prediction were performed to indicate miRNAs involved in host-parasite interactions and miRNAs associated with visceral and/or cerebral larva migrans in the infected mice. Quantitative real-time polymerase chain reaction (PCR) was used to amplify circulating miRNAs from the infected mice. RESULTS This study reports host and parasite miRNAs in the plasma of BALB/c mice with visceral and cerebral larva migrans and demonstrates the alterations of these miRNAs during the migration of larvae from the livers through the lungs and to the brains of infected mice. After filtering unspecific changes in an irrelevant control, T. canis-derived miRNAs and T. canis infection-induced differential miRNAs are predicted to modulate genes consistently involved in mitogen-activated protein kinase (MAPK) signalling and pathways regulating axon guidance and pluripotency of stem in the infected mice with visceral and cerebral larva migrans. For these plasma circulating miRNAs predicted to be involved in host-parasite crosstalk, two murine miRNAs (miR-26b-5p and miR-122-5p) are experimentally verified to be responsive to larva migrans and represent circulating biomarker candidates for visceral and cerebral toxocariasis in BALB/c mice. CONCLUSIONS Our findings provide novel insights into the crosstalk of T. canis and the mammalian host via plasma circulating miRNAs, and prime agents and indicators for visceral and cerebral larva migrans. A deep understanding of these aspects will underpin the diagnosis and control of toxocariasis in humans and animals.
Collapse
Affiliation(s)
- Yifan Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Die Zhong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Zhiwei Xiong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Sishi Liu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Tao Wang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China.
| |
Collapse
|
5
|
Savardashtaki A, Khalili Alashti S, Vafadar A, Sadeghi M, Baneshi M, Hashemi KS, Karami J, Muro A, Manzano-Roman R, Rashidi S. An integrated bioinformatic analysis of microarray datasets to identify biomarkers and miRNA-based regulatory networks in leishmaniasis. Sci Rep 2024; 14:12981. [PMID: 38839916 PMCID: PMC11153516 DOI: 10.1038/s41598-024-63462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Micro RNAs (miRNAs, miRs) and relevant networks might exert crucial functions during differential host cell infection by the different Leishmania species. Thus, a bioinformatic analysis of microarray datasets was developed to identify pivotal shared biomarkers and miRNA-based regulatory networks for Leishmaniasis. A transcriptomic analysis by employing a comprehensive set of gene expression profiling microarrays was conducted to identify the key genes and miRNAs relevant for Leishmania spp. infections. Accordingly, the gene expression profiles of healthy human controls were compared with those of individuals infected with Leishmania mexicana, L. major, L. donovani, and L. braziliensis. The enrichment analysis for datasets was conducted by utilizing EnrichR database, and Protein-Protein Interaction (PPI) network to identify the hub genes. The prognostic value of hub genes was assessed by using receiver operating characteristic (ROC) curves. Finally, the miRNAs that interact with the hub genes were identified using miRTarBase, miRWalk, TargetScan, and miRNet. Differentially expressed genes were identified between the groups compared in this study. These genes were significantly enriched in inflammatory responses, cytokine-mediated signaling pathways and granulocyte and neutrophil chemotaxis responses. The identification of hub genes of recruited datasets suggested that TNF, SOCS3, JUN, TNFAIP3, and CXCL9 may serve as potential infection biomarkers and could deserve value as prognostic biomarkers for leishmaniasis. Additionally, inferred data from miRWalk revealed a significant degree of interaction of a number of miRNAs (hsa-miR-8085, hsa-miR-4673, hsa-miR-4743-3p, hsa-miR-892c-3p, hsa-miR-4644, hsa-miR-671-5p, hsa-miR-7106-5p, hsa-miR-4267, hsa-miR-5196-5p, and hsa-miR-4252) with the majority of the hub genes, suggesting such miRNAs play a crucial role afterwards parasite infection. The hub genes and hub miRNAs identified in this study could be potentially suggested as therapeutic targets or biomarkers for the management of leishmaniasis.
Collapse
Affiliation(s)
- Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Khalili Alashti
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Sadeghi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baneshi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Sadat Hashemi
- Department of Medical Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (E-INTRO), Faculty of Pharmacy, Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), University of Salamanca, 37008, Salamanca, Spain
| | - Raúl Manzano-Roman
- Infectious and Tropical Diseases Group (E-INTRO), Faculty of Pharmacy, Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), University of Salamanca, 37008, Salamanca, Spain.
| | - Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
6
|
Chowdhury S, Ricafrente A, Cwiklinski K, Sais D, Dalton JP, Tran N, Donnelly S. Exploring the utility of circulating miRNAs as diagnostic biomarkers of fasciolosis. Sci Rep 2024; 14:7431. [PMID: 38548871 PMCID: PMC10978983 DOI: 10.1038/s41598-024-57704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Alison Ricafrente
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Krystyna Cwiklinski
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - John P Dalton
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| |
Collapse
|
7
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
8
|
Mitra I, Bhattacharya A, Paul J, Anisuzzaman. Present status with impacts and roles of miRNA on Soil Transmitted Helminthiosis control: A review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100162. [PMID: 37520661 PMCID: PMC10371793 DOI: 10.1016/j.crphar.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Soil-Transmitted Helminthiasis (STH) is one of the most widespread Neglected Tropical Diseases (NTDs), and almost 1.5 billion of the global population is affected, mostly in the indigent, countryside sectors of tropics/subtropics. STH, commonly caused by various nematodes, adversely affects the hosts' growth, cognatic development, and immunity. Albendazole is most commonly used against STH (Soil-Transmitted Helminths) but resistance has already been reported in different countries. To date, no effective vaccine is present against STH. miRNAs are a unique class of small non-coding RNA, regulating various biological activities indulging host immune responses in host-pathogen interaction of STH. Dysregulation of miRNAs are being considered as one of the most important aspect of host-parasite interactions. Thus, it is the prime importance to identify and characterize parasite-specific as well as host-derived miRNAs to understand the STH infection at the molecular level. Systematic bibliometric analysis reveals a huge knowledge gap in understanding the disease by using both host and parasitic miRNAs as a potential biomarker. In this study, we addressed the present status of the STH prevalence, and therapy under the light of miRNAs. This would further help in designing new inhibitors and therapeutic strategies to control STH.
Collapse
Affiliation(s)
- Imon Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Anisuzzaman
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
9
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Hasheminasabgorji E, Mishan MA, Tabari MAK, Bagheri A. miR-638: A Promising Cancer Biomarker with Therapeutic Potential. Curr Mol Med 2023; 23:377-389. [PMID: 35382724 DOI: 10.2174/1566524022666220405125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is an unmet need to improve the diagnosis of cancer with precise treatment strategies. Therefore, more powerful diagnostic, prognostic, and therapeutic biomarkers are needed to overcome tumor cells. microRNAs (miRNAs, miRs), as a class of small non-coding RNAs, play essential roles in cancer through the tumor-suppressive or oncogenic effects by post-transcriptional regulation of their targets. Many studies have provided shreds of evidence on aberrantly expressed miRNAs in numerous cancers and have shown that miRNAs could play potential roles as diagnostic, prognostic, and even therapeutic biomarkers in patients with cancers. Findings have revealed that miR-638 over or underexpression might play a critical role in cancer initiation, development, and progression. However, the mechanistic effects of miR-638 on cancer cells are still controversial. CONCLUSION In the present review, we have focused on the diagnostic, prognostic, and therapeutic potentials of miR-638 and discussed its mechanistic roles in various types of cancers.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Schneider-Crease IA, Feder JA, Baniel A, McCann C, Haile AA, Abebe B, Fitzgerald L, Gomery MA, Simberloff RA, Petrie ZL, Gabriel S, Dorny P, Fashing PJ, Nguyen N, Bergman TJ, Beehner JC, Snyder-Mackler N, Lu A. Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate. Sci Rep 2022; 12:21307. [PMID: 36494454 PMCID: PMC9734142 DOI: 10.1038/s41598-022-25298-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Neopterin, a product of activated white blood cells, is a marker of nonspecific inflammation that can capture variation in immune investment or disease-related immune activity and can be collected noninvasively in urine. Mounting studies in wildlife point to lifetime patterns in neopterin related to immune development, aging, and certain diseases, but rarely are studies able to assess whether neopterin can capture multiple concurrent dimensions of health and disease in a single system. We assessed the relationship between urinary neopterin stored on filter paper and multiple metrics of health and disease in wild geladas (Theropithecus gelada), primates endemic to the Ethiopian highlands. We tested whether neopterin captures age-related variation in inflammation arising from developing immunity in infancy and chronic inflammation in old age, inflammation related to intramuscular tapeworm infection, helminth-induced anti-inflammatory immunomodulation, and perturbations in the gastrointestinal microbiome. We found that neopterin had a U-shaped relationship with age, no association with larval tapeworm infection, a negative relationship with metrics related to gastrointestinal helminth infection, and a negative relationship with microbial diversity. Together with growing research on neopterin and specific diseases, our results demonstrate that urinary neopterin can be a powerful tool for assessing multiple dimensions of health and disease in wildlife.
Collapse
Affiliation(s)
- India A Schneider-Crease
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Jacob A Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Alice Baniel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Colleen McCann
- Department of Mammals, Bronx Zoo, Wildlife Conservation Society, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | | | - Belayneh Abebe
- African Wildlife Foundation, Simien Mountains Landscape Conservation and Management Project, Debark, Ethiopia
| | | | - Megan A Gomery
- Simien Mountains Gelada Research Project, Debark, Ethiopia
| | - Ruth A Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | | | - Sarah Gabriel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Peter J Fashing
- Department of Anthropology, California State University Fullerton, Fullerton, CA, USA
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nga Nguyen
- Department of Anthropology, California State University Fullerton, Fullerton, CA, USA
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thore J Bergman
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
12
|
Ge Y, Wang C, Cui B, Liu Y, Lin D, Zhang L, Zhao L, Ma J. Isoflurane Preconditioning May Attenuate Cardiomyocyte Injury Induced by Hypoxia/Reoxygenation Possibly by Regulating miR-363-3p. Neurotox Res 2022; 40:1895-1901. [PMID: 36223054 DOI: 10.1007/s12640-022-00584-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022]
Abstract
This study attempted to explore whether miR-363-3p play a role in the isoflurane (ISO)-mediated protective effect of cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). A myocardial cell injury model was established, and the different preconditioning ISO concentrations were screened and determined. The miR-363-3p level was detected by RT-qPCR. The effects of miR-363-3p on proliferation and apoptosis of H9c2 cells were detected by CCK-8 assay and flow cytometry. Myocardial injury indexes were determined by enzyme-linked immunosorbent assay (ELISA). The interaction of miR-363-3p with the 3'-UTR of the KLF2 gene was confirmed by luciferase reporter gene assay. ISO pretreatment can reduce the up-regulation of miR-363-3p after H/R injury. ISO pretreatment reduces the inhibition of cell viability and the promotion of cell apoptosis induced by H/R stimuli, while the overexpression of miR-363-3p counteracts the protective effect of ISO pretreatment. Meanwhile, ISO pretreatment also reduced the level of markers of H/R-induced myocardial injury. Moreover, luciferase reporter analysis showed that KLF2 was the downstream target gene of miR-363-3p. ISO pretreatment may alleviate H/R-induced cardiomyocyte injury by regulating miR-363-3p.
Collapse
Affiliation(s)
- Yanhu Ge
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Chengbin Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Yaguang Liu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Liang Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Liyun Zhao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University - Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029, Beijing, China.
| |
Collapse
|
13
|
Ullah H, Tian Y, Arbab S, Li K, Khan MIU, Rahman SU, Qadeer A, Muhammad N, Suleman, Hassan IU. Circulatory microRNAs in helminthiases: Potent as diagnostics biomarker, its potential role and limitations. Front Vet Sci 2022; 9:1018872. [PMID: 36387413 PMCID: PMC9650547 DOI: 10.3389/fvets.2022.1018872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 08/08/2023] Open
Abstract
Infections caused by helminths are responsible for severe public health problems and economic burden on continental scale. Well-timed and precise diagnosis of helminth infections is critical for taking by appropriate approaches for pathogen control. Circulating miRNAs are stable diagnostic tool for different diseases found in a variety of body fluid. As diagnostic biomarkers in infectious diseases, miRNAs detection in body fluids of helminth infected hosts is growing promptly. Uncovering miRNAs is a relatively new tool, used for early-stage detection of helminth infection from experimental or non-invasive clinical samples. miRNAs can be detected in body fluids such as serum, saliva, urine, and tissues of helminth infected host, mainly blood offering important benefits for diagnosis accurately. In this review, we discuss different characteristics of helminth parasite-derived circulating and EV miRNAs, supporting its potential uses in for helminth diagnosis and treatment efficiency.
Collapse
Affiliation(s)
- Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Yali Tian
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nehaz Muhammad
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Suleman
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| |
Collapse
|
14
|
Song D, Zhang Q, Zhang H, Zhan L, Sun X. MiR-130b-3p promotes colorectal cancer progression by targeting CHD9. Cell Cycle 2022; 21:585-601. [PMID: 35100082 PMCID: PMC8942501 DOI: 10.1080/15384101.2022.2029240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Previous research revealed that microRNA 130b-3p (miR-130b-3p) significantly upregulated in CRC patients can be detected in feces from patients with such a neoplasm. In this study, the biological role and molecular mechanism of miR-130b-3p in CRC were explored. The miR-130b-3p level in CRC tissues, feces and cell lines was measured using RT-qPCR analysis. CCK-8, EdU, TUNEL, flow cytometry, Western blotting, and in vivo experiments were performed to explore the biological function of miR-130b-3p in CRC progression. For this purpose, 16 BALB/c nude mice were assigned to two groups. The experiment lasted for four months. Bioinformatics analysis and luciferase reporter assay were used to investigate the regulatory mechanism related to miR-130b-3p. In our research, miR-130b-3p was upregulated in CRC tissues and cells and it was detected in feces from CRC patients. Moreover, miR-130b-3p inhibition suppressed CRC cell proliferation and promoted cell apoptosis in vitro as well as repressed CRC tumor growth in vivo. Mechanistically, miR-130b-3p directly targeted the 3'untranslated region (UTR) of chromodomain helicase DNA binding protein 9 (CHD9) and negatively regulated CHD9 expression. Furthermore, CHD9 played an anti-oncogenic role in CRC. Inhibition of CHD9 expression was likely to be a key mechanism by which miR-130b-3p increased CRC cell growth, with a target protector experiment revealing miR-130b-3p influenced proliferation via direct inhibition of CHD9. MiR-130b-3p promotes the progression and tumorigenesis of CRC at least partially by targeting CHD9.Abbreviations: CRC: Colorectal cancer; miR-130b-3p: microRNA 130b-3p; CHD9: chromodomain helicase DNA binding protein 9; UTR: untranslated region; FIT: fecal immunochemical test; AAs: advanced adenomas.
Collapse
Affiliation(s)
- Dan Song
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,Dan Song Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Qian Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Hao Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China,CONTACT Xinchen Sun Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
He X, Pan W. Host–parasite interactions mediated by cross-species microRNAs. Trends Parasitol 2022; 38:478-488. [DOI: 10.1016/j.pt.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
16
|
Khazeei Tabari MA, Mishan MA, Moradi M, Khandan M, Khoshhal H, Mahrooz A, Bagheri A. Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6830560. [PMID: 34926688 PMCID: PMC8677408 DOI: 10.1155/2021/6830560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Moradi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Mishan MA, Khazeei Tabari MA, Mahrooz A, Bagheri A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. Eur J Cancer Prev 2021; 30:413-421. [PMID: 33720053 DOI: 10.1097/cej.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flavonoids, a broad class of polyphenolic compounds, can potentially have several therapeutic properties in human diseases, including protective effects against oxidative stress, inflammation, cardiovascular disease, diabetes, neurodegenerative disorders, and cancers. Luteolin as a member of flavonoids has been found to exhibit several anticancer properties mainly through cell apoptosis induction, inhibition of invasion, cell proliferation, network formation, and migration. Recent studies have revealed that phytochemicals such as luteolin may exert therapeutic properties through microRNAs (miRNAs or miRs), which have been emerged as important molecules in cancer biology in recent years. miRNAs, as a class of noncoding RNAs, have several important roles in cancer progression or regression. In this review, we aimed to summarize and discuss the role of miRNAs in the luteolin effects on different cancers. This review can be in line with the studies, which have shown that miRNAs may be potential therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Mu Y, McManus DP, Gordon CA, Cai P. Parasitic Helminth-Derived microRNAs and Extracellular Vesicle Cargos as Biomarkers for Helminthic Infections. Front Cell Infect Microbiol 2021; 11:708952. [PMID: 34249784 PMCID: PMC8267863 DOI: 10.3389/fcimb.2021.708952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
As an adaption to their complex lifecycles, helminth parasites garner a unique repertoire of genes at different developmental stages with subtle regulatory mechanisms. These parasitic worms release differential components such as microRNAs (miRNAs) and extracellular vesicles (EVs) as mediators which participate in the host-parasite interaction, immune regulation/evasion, and in governing processes associated with host infection. MiRNAs are small (~ 22-nucleotides) non-coding RNAs that regulate gene expression at the post-transcriptional level, and can exist in stable form in bodily fluids such as serum/plasma, urine, saliva and bile. In addition to reports focusing on the identification of miRNAs or in the probing of differentially expressed miRNA profiles in different development stages/sexes or in specific tissues, a number of studies have focused on the detection of helminth-derived miRNAs in the mammalian host circulatory system as diagnostic biomarkers. Extracellular vesicles (EVs), small membrane-surrounded structures secreted by a wide variety of cell types, contain rich cargos that are important in cell-cell communication. EVs have attracted wide attention due to their unique functional relevance in host-parasite interactions and for their potential value in translational applications such as biomarker discovery. In the current review, we discuss the status and potential of helminth parasite-derived circulating miRNAs and EV cargos as novel diagnostic tools.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Raissi V, Zibaei M, Raiesi O, Samani Z, Yarahmadi M, Etemadi S, Istiqomah A, Alizadeh Z, Shadabi S, Sohrabi N, Ibrahim A. Parasite-derived microRNAs as a diagnostic biomarker: potential roles, characteristics, and limitations. J Parasit Dis 2021; 45:546-556. [PMID: 34295053 DOI: 10.1007/s12639-021-01395-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs), a subclass of small regulatory RNAs that present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. MiRNAs' mode of action has attracted wide attention as a result of their unique functional importance. MiRNAs play a role in diverse physiological and pathological processes ranging from organ development, immune function to apoptosis and cancer at the post-transcription gene expression. Thus, miRNAs are known to be targets for clinical treatment and therapy. The discovery of the high stability of circulating miRNA in various types of host body fluids, such as whole blood, serum, plasma, saliva, and urine has increased great interest among researchers in the potential of circulating miRNA as a prognosis/diagnosis of infectious. Some circulating miRNAs biomarkers advanced to clinical applications related to human diseases. However, this idea starts to come only in the fields of infectious disease. The goal of this review is to enhance the current understanding of these molecules and their applicability in the field of medicine. A detailed review of the available literature consulting tools performed in online repositories such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate. This review summarizes an overview of preclinical studies using circulating miRNAs biomarkers against infectious diseases affecting humans. The use of miRNA as a safe and potential tool is encouraging news, considering that until now, guidelines for the use of miRNA in clinical practice are still lacking.
Collapse
Affiliation(s)
- Vahid Raissi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Samani
- DVM Student At Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Yarahmadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soudabeh Etemadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Afrida Istiqomah
- West Java Animal Health and Veterinary Public Health, Jakarta, Indonesia
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shadabi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asmaa Ibrahim
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
20
|
Ayala-Suárez R, Díez-Fuertes F, Calonge E, De La Torre Tarazona HE, Gracia-Ruíz de Alda M, Capa L, Alcamí J. Insight in miRNome of Long-Term Non-Progressors and Elite Controllers Exposes Potential RNAi Role in Restraining HIV-1 Infection. J Clin Med 2020; 9:jcm9082452. [PMID: 32751854 PMCID: PMC7464121 DOI: 10.3390/jcm9082452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term non-progressors (LTNP) and elite controllers (EC) represent spontaneous natural models of efficient HIV-1 response in the absence of treatment. The main purposes of this work are to describe the miRNome of HIV-1 infected patients with different extreme phenotypes and identify potentially altered pathways regulated by differentially expressed (DE) miRNAs. The miRNomes from peripheral blood mononuclear cells (PBMCs) of dual phenotype EC-LTNP or LTNP with detectable viremia and HIV-infected patients with typical progression before and after treatment, were obtained through miRNA-Seq and compared among them. The administration of treatment produces 18 DE miRNAs in typical progressors. LTNP condition shows 14 DE miRNA when compared to typical progressors, allowing LTNP phenotype differentiation. A set of four miRNAs: miR-144-3p, miR-18a-5p, miR-451a, and miR-324 is strongly downregulated in LTNP and related to protein regulation as AKT, mTOR, ERK or IKK, involved in immune response pathways. Deregulation of 28 miRNA is observed between EC-LTNP and viremic-LTNP, including previously described anti-HIV miRNAs: miR-29a, associated with LTNP phenotype, and miR-155, targeting different pre-integration complexes such as ADAM10 and TNPO3. A holistic perspective of the changes observed in the miRNome of patients with different phenotypes of HIV-control and non-progression is provided.
Collapse
Affiliation(s)
- Rubén Ayala-Suárez
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| | - Esther Calonge
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Humberto Erick De La Torre Tarazona
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - María Gracia-Ruíz de Alda
- Sección de Enfermedades Infecciosas, Medicina Interna, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Laura Capa
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - José Alcamí
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| |
Collapse
|
21
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Abstract
Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro - no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10-12 years have seen the beginnings of helminth parasitology's journey into the 'omics' era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of 'post-genomic progress in helminth parasitology'. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.
Collapse
Affiliation(s)
- Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|