1
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 PMCID: PMC11818042 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Assefa GM, Roberts JA, Aslan AT, Mohammed SA, Sime FB. A systematic review and individual bacterial species level meta-analysis of in vitro studies on the efficacy of ceftazidime/avibactam combined with other antimicrobials against carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 2025; 80:334-346. [PMID: 39691958 PMCID: PMC11787894 DOI: 10.1093/jac/dkae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Gram-negative bacteria (CR-GNB) develop resistance to many antimicrobials. To effectively manage infections caused by these organisms, novel agents and/or combinations of antimicrobials are required. OBJECTIVES Evaluated the in vitro efficacy of ceftazidime/avibactam in combination with other antimicrobials against CR-GNB. METHODS PubMed, Web of Science, Embase and Scopus were searched. Study outcomes were quantified by counting the number of isolates exhibiting synergy, defined as a fractional inhibitory concentration index ≤ 0.5 for checkerboard and Etest, and a >2 log cfu/mL reduction for time-kill studies. The proportion of synergy was calculated as the ratio of isolates exhibiting synergy to the total number of isolates tested. These proportions were analysed using a random-effects model, following the Freeman-Tukey double-arcsine transformation. RESULTS Forty-five in vitro studies were included. A total of 734 isolates were tested, and 69.3% of them were resistant to ceftazidime/avibactam. The combination of ceftazidime/avibactam with aztreonam showed a high synergy rate against carbapenem-resistant Klebsiella pneumoniae (effect size, ES = 0.91-0.98) and Escherichia coli (ES = 0.75-1.00). Ceftazidime/avibactam also demonstrated a high synergy rate (ES = 1) in time-kill studies when combined with azithromycin, fosfomycin and gentamicin against K. pneumoniae. Compared to ceftazidime/avibactam alone, a higher bactericidal rate was reported when ceftazidime/avibactam was combined with other antimicrobials against carbapenem-resistant K. pneumoniae (57% versus 31%) and E. coli (93% versus 0%). CONCLUSIONS Ceftazidime/avibactam frequently demonstrates synergistic bactericidal activity when combined with various antimicrobials against CR-GNB in in vitro tests. Further pre-clinical and clinical studies are warranted to validate the utility of ceftazidime/avibactam-based combination regimens for CR-GNB infections.
Collapse
Affiliation(s)
- Getnet M Assefa
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Jason A Roberts
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Herston Infectious Disease Institute (HeIDI), Metro North Health, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emerging and Pain Medicine, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Abdullah T Aslan
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Solomon A Mohammed
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Fekade B Sime
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Tarski I, Śmiechowicz J, Duszyńska W. Cefiderocol in the Successful Treatment of Complicated Hospital-Acquired K. pneumoniae NDM, OXA48 Intraabdominal Infection. Infect Drug Resist 2024; 17:5163-5170. [PMID: 39605990 PMCID: PMC11600933 DOI: 10.2147/idr.s485450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background Klebsiella pneumoniae MDR/XDR constitutes a difficult to treat bacteria in a number of infections as there are few therapeutic options. Promising drugs in such cases can be cefiderocol, aztreonam and ceftazidime/avibactam or meropenem/vaborbactam. Case Presentation A 72-year-old female patient with sepsis caused by KP NDM, OXA 48 was admitted to the Intensive Care Unit, immediately after an emergency graftectomy (of a recently transplanted kidney) complicated with bleeding. Because of suspicion of intra-abdominal infection, a broad-spectrum empirical antibiotic therapy was initiated (meropenem, vancomycin, colistin). The patient underwent an abdominal revision 48 hours after admission. On the 3rd day of hospitalization, diagnosis of a septic shock with etiology of KP NDM, OXA 48 was made. The strain had sensitivity to a colistin and a cefiderocol. On 13th day in the ICU a relaparotomy was performed. Again, KP strains with sensitivity to cefiderocol only, were cultured from intra-abdominal fluid. Aztreonam, in combination with meropenem/vaborbactam, were included in the treatment and were used together with colistin and tigecycline. In the following days, the inflammatory markers decreased slightly, but the patient's general condition did not improve. On day 27 ceftazidime/avibactam and aztreonam were added, while colistin, meropenem/vaborbactam and fosfomycin were discontinued. On 37th day of hospitalization, cefiderocol became available in hospital and was included in the treatment. Cefiderocol monotherapy was continued for 8 days. After 4 days of cefiderocol treatment, the inflammatory markers CRP and PCT decreased and a significant improvement in patient's condition were observed. On day 56, the patient was transferred to another department. Conclusion A surgical debridement of a source infection, and usage of meropenem/vaborbactam or ceftazidime/avibactam together with aztreonam and colistin allowed survival of the patient but not full recovery. Ultimately, only the cefiderocol monotherapy was effective in treatment of the patient with septic shock of KP NDM OXA 48 etiology.
Collapse
Affiliation(s)
- Ignacy Tarski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jakub Śmiechowicz
- Department and Clinic of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Wiesława Duszyńska
- Department and Clinic of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Tao L, Dahlquist A, Harris H, Jacobs E, Wenzler E, Simner PJ, Humphries R. Multicenter evaluation of activity of aztreonam in combination with avibactam, relebactam, and vaborbactam against metallo-β-lactamase-producing carbapenem-resistant gram-negative bacilli. Antimicrob Agents Chemother 2024; 68:e0069324. [PMID: 39158279 PMCID: PMC11459955 DOI: 10.1128/aac.00693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Treatment options for carbapenem-resistant gram-negative bacilli (CR-GNB), especially metallo-β-lactamase (MBL)-producing CR-GNB, are limited. Aztreonam (ATM) in combination with avibactam (AVI) has shown potential for treating MBL-producing carbapenem-resistant Enterobacterales (CREs) and Stenotrophomonas maltophilia. However, data on ATM in combination with other β-lactamase inhibitors (BLIs) are limited. We performed a multicenter study to evaluate the in vitro activities of ATM in combination with AVI, vaborbactam (VAB), relebactam (REL), tazobactam (TAZ) as well as with their commercially available formulations against CREs and S. maltophilia using broth microdilution. AVI restored ATM activity for MBL-producing CREs (ATM: 9.8% vs ATM-AVI: 78.0%) and S. maltophilia (ATM: 0% vs ATM-AVI: 93.3%). REL also moderately restored activity of ATM in MBL-producing CREs (ATM: 9.8% vs ATM-REL: 42.7%) and S. maltophilia (ATM: 0% vs ATM-REL: 68.9%). VAB and TAZ demonstrated very limited effect on the activity of ATM against CR-GNB evaluated. The combination of ATM with ceftazidime-AVI (CAZ-AVI) demonstrated maximum activity against CREs. Although ATM-CAZ-AVI is the most potent regimen available for CREs and S. maltophilia, ATM-IMI-REL might be a reasonable alternative.
Collapse
Affiliation(s)
- Lili Tao
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley Dahlquist
- College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Harley Harris
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Jacobs
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Wenzler
- College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia J. Simner
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Romney Humphries
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Mirza HC, Öğüç Şanlı Ö. Evaluation of in vitro activity of ceftaroline, ceftobiprole and their combination with trimethoprim/sulfamethoxazole against MRSA isolates: a two center study. J Chemother 2024; 36:457-464. [PMID: 38351629 DOI: 10.1080/1120009x.2024.2316539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 09/20/2024]
Abstract
There is an increasing need for new synergistic antimicrobial combinations against multidrug-resistant bacteria. Our objective was to evaluate the activity of ceftaroline, ceftobiprole and their combination with trimethoprim/sulfamethoxazole against methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered at two centers in Turkey. Activities of ceftaroline and ceftobiprole were tested against 100 MRSA isolates using gradient diffusion method. Activities of ceftaroline and ceftobiprole in combination with trimethoprim/sulfamethoxazole against 20 selected isolates (including all isolates that were non-susceptible to ceftaroline or ceftobiprole, and randomly selected isolates) were investigated using MIC:MIC ratio method. Antimicrobial interactions were interpreted using the fractional inhibitory concentration (FIC) index. The MIC50/MIC90 values for ceftaroline and ceftobiprole were 0.75/1 and 1/1.5 mg/L, respectively. Ceftaroline and ceftobiprole susceptibility rates among 100 MRSA isolates were 94% and 96%, respectively. Ceftaroline, ceftobiprole and trimethoprim/sulfamethoxazole MICs of isolates were not increased when ceftaroline or ceftobiprole was combined with trimethoprim/sulfamethoxazole. Ceftobiprole- trimethoprim/sulfamethoxazole combination demonstrated additivity against 35%, whereas ceftaroline- trimethoprim/sulfamethoxazole combination demonstrated additivity against 10% of 20 MRSA isolates. The remaining interactions for MRSA isolates were indifference. Three (75%) of four ceftobiprole-resistant isolates became susceptible to ceftobiprole after adding trimethoprim/sulfamethoxazole. None of the ceftaroline non-susceptible isolates became susceptible to ceftaroline after adding trimethoprim/sulfamethoxazole. Ceftobiprole- trimethoprim/sulfamethoxazole combination may be a better treatment option than ceftaroline- trimethoprim/sulfamethoxazole combination for MRSA infections. Clinical studies are needed to confirm the results of our in vitro study.
Collapse
Affiliation(s)
- Hasan Cenk Mirza
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Özlem Öğüç Şanlı
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Adana Medical and Research Center, Adana, Turkey
| |
Collapse
|
6
|
Li W, Zhang J, Fu Y, Wang J, Liu L, Long W, Yu K, Li X, Wei C, Liang X, Wang J, Li C, Zhang X. In vitro and in vivo activity of ceftazidime/avibactam and aztreonam alone or in combination against mcr-9, serine- and metallo-β-lactamases-co-producing carbapenem-resistant Enterobacter cloacae complex. Eur J Clin Microbiol Infect Dis 2024; 43:1309-1318. [PMID: 38700663 DOI: 10.1007/s10096-024-04841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-β-lactamase (MBL) and TEM type β-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.
Collapse
Affiliation(s)
- Wengang Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjun Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Longjin Liu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Li
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China.
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Słabisz N, Leśnik P, Janc J, Fidut M, Bartoszewicz M, Dudek-Wicher R, Nawrot U. Evaluation of the in vitro susceptibility of clinical isolates of NDM-producing Klebsiella pneumoniae to new antibiotics included in a treatment regimen for infections. Front Microbiol 2024; 15:1331628. [PMID: 38646622 PMCID: PMC11027895 DOI: 10.3389/fmicb.2024.1331628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Background Due to the growing resistance to routinely used antibiotics, the search for new antibiotics or their combinations with effective inhibitors against multidrug-resistant microorganisms is ongoing. In our study, we assessed the in vitro drug susceptibility of Klebsiella pneumoniae strains producing New Delhi metallo-β-lactamases (NDM) to antibiotics included in the Infectious Diseases Society of America (IDSA) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recommendations. Methods A total of 60 strains of NDM-producing K. pneumoniae were obtained from different patients hospitalized at the 4th Military Hospital in Wroclaw between 2019 and 2022 and subjected to drug susceptibility to selected antibiotics, including the effects of drug combinations. Results Among the tested antibiotics, the highest sensitivity (100%) was observed for cefiderocol, eravacycline (interpreted according to the European Committee on Antimicrobial Susceptibility Testing [EUCAST]), and tigecycline. Sensitivity to intravenous fosfomycin varied depending on the method used. Using the "strip stacking" method, determining cumulative sensitivity to ceftazidime/avibactam and aztreonam demonstrated 100% in vitro sensitivity to this combination among the tested strains. Conclusion The in vitro susceptibility assessment demonstrated that, the best therapeutic option for treating infections caused by carbapenemase-producing strains seems to be a combination of ceftazidime/avibactam with aztreonam. Due to the safety of using both drugs, cost effectiveness, and the broadest indications for use among the tested antibiotics, this therapy should be the first-line treatment for carbapenemase-producing Enterobacterales infections. Nevertheless, a comprehensive evaluation of the efficacy of treating infections caused by NDM-producing K. pneumoniae strains should include not only in vitro susceptibility assessment but also an analysis of clinical cases.
Collapse
Affiliation(s)
- Natalia Słabisz
- Department of Laboratory Diagnostic, 4th Military Clinical Hospital, Wroclaw, Poland
| | - Patrycja Leśnik
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, Hospital of Ministry of the Interior and Administration, Wroclaw, Poland
| | - Miłosz Fidut
- Department of Cardiology, 4th Military Clinical Hospital, Wroclaw, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Zakhour J, El Ayoubi LW, Kanj SS. Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev Anti Infect Ther 2024; 22:189-201. [PMID: 38275276 DOI: 10.1080/14787210.2024.2311213] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Metallo-beta-lactamases (MBLs) are responsible for resistance to almost all beta-lactam antibiotics. Found predominantly in Gram-negative bacteria, they severely limit treatment options. Understanding the epidemiology, risk factors, treatment, and prevention of infections caused by MBL-producing organisms is essential to reduce their burden. AREAS COVERED The origins and structure of MBLs are discussed. We describe the mechanisms of action that differentiate MBLs from other beta-lactamases. We discuss the global epidemiology of MBL-producing organisms and their impact on patients' outcomes. By exposing the mechanisms of transmission of MBLs among bacterial populations, we emphasize the importance of infection prevention and control. EXPERT OPINION MBLs are spreading globally and challenging the majority of available antibacterial agents. Genotypic tests play an important role in the identification of MBL production. Phenotypic tests are less specific but may be used in low-resource settings, where MBLs are more predominant. Infection prevention and control are critical to reduce the spread of organisms producing MBL in healthcare systems. New combinations such as avibactam-aztreonam and new agents such as cefiderocol have shown promising results for the treatment of infections caused by MBL-producing organisms. New antibiotic and non-antibiotic agents are being developed and may improve the management of infections caused by MBL-producing organisms.
Collapse
Affiliation(s)
- Johnny Zakhour
- Internal Medicine Department, Henry Ford Hospital, Detroit, MI, USA
| | - L'Emir Wassim El Ayoubi
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
10
|
Diaz A, G S, Balaji S, Ramakrishnan J, Thamotharan S, Ramakrishnan V. Comprehensive screening of marine metabolites against class B1 metallo-β-lactamases of Klebsiella pneumoniae using two-pronged in silico approach. J Biomol Struct Dyn 2023; 41:10930-10943. [PMID: 36541935 DOI: 10.1080/07391102.2022.2159532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic resistance is one of the major global threats in healthcare. Metallo-β-Lactamases (MBL) are a class of enzymes in bacteria that cleave β-lactam antibiotics and confer resistance. MBLs are further divided into subclasses B1, B2 and B3. Of these, subclasses B1-MBLs (including NDM-1, VIM-2 and IMP-1) constitute the clinically prevalent lactamases conferring resistance. To date, no effective drugs are available clinically against MBLs. In this work, we aim to identify potent inhibitors for the B1 subclass of MBL from available marine metabolites in Comprehensive Marine Natural Product database through integrated in silico approaches. We have used two methods, namely, the high-throughput strategy and the pharmacophore-based strategy to identify potential inhibitors from marine metabolites. High-throughput virtual screening identified N-methyl mycosporine-Ser, which had the highest binding affinity to NDM-1. The pharmacophore-based approach based on co-crystallized ligands identified makaluvic acid and didymellamide with higher binding affinity across B1-MBLs. Taking into account of the advantage of a pharmacophore model-based approach with higher binding affinity, we conclude that both makaluvic acid and didymellamide show potential broad-spectrum effects by binding to all three B1-MBL receptors. The study also indicates the need to take multiple in silico approaches to screen and identify novel inhibitors. Together, our study reveals promising inhibitors that can be identified from marine systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aathithya Diaz
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shripushkar G
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shruti Balaji
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Subbiah Thamotharan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Vigneshwar Ramakrishnan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
11
|
Xu J, Luo C, Huang L, Xiao X, Liu L, Yang Z. Clinical Efficacy and Safety Evaluation of Ceftazidime-Avibactam in the Treatment of Klebsiella pneumoniae Infection: A Retrospective Analysis from a Hospital in China. Infect Drug Resist 2023; 16:7227-7237. [PMID: 38023408 PMCID: PMC10656859 DOI: 10.2147/idr.s435882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ceftazidime-avibactam (CAZ-AVI) is a new cephalosporin/β-lactamase inhibitor combination that received clinical approval in China in 2019. This study aims to investigate the efficacy and safety of CAZ-AVI in the treatment of Klebsiella pneumoniae (KP) infection in a hospital, and differences in efficacy among various infection sites and between monotherapy and combination therapy, providing valuable insights for its further application. Methods Patients who used CAZ-AVI between January 2019 and April 2023 were identified through the hospital information system. Demographic information, details of the infection site, KP strain's drug sensitivity report, treatment duration, combination therapies, adverse drug reactions (ADR), and 28-day survival were recorded. Clinical and microbiological efficacies were analyzed using SPSS 23.0 software to compare different infection sites and combination therapies. Results The overall effective clinical response (CR) rate of CAZ-AVI against KP infection was 62.13%, with a favorable microbial response (MR) rate was 65.68% and a 28-day survival rate was 63.91%. No significant difference occurred in effective CR and 28-day survival rate among different infection sites (P = 0.709 and 0.862, respectively). The favorable MR rate for abdominal infections was slightly lower than that for other sites of infection (P = 0.021). No significant differences in effective CR, favorable MR, and 28-day survival between monotherapy and combination therapy were present (P values were 0.649, 0.123, and 0.280, respectively). The incidence of ADR was 1.78%, including increased creatinine, elevated transaminase, hematuria, and thrombocytopenia. Conclusion CAZ-AVI demonstrates good clinical efficacy and safety in the treatment of KP infections. The clinical efficacy of CAZ-AVI was similar across different infection sites, and combination therapy did not show an advantage over monotherapy. Further studies are warranted. It should be noted that CAZ-AVI may induce thrombocytopenia and hematuria.
Collapse
Affiliation(s)
- Jia Xu
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Chengjia Luo
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Liang Huang
- Department of Rehabilitation, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Xi Xiao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Ling Liu
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Zhiling Yang
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| |
Collapse
|
12
|
Abniki R, Tashakor A, Masoudi M, Mansury D. Global Resistance of Imipenem/Relebactam against Gram-Negative Bacilli: Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2023; 100:100723. [PMID: 38174096 PMCID: PMC10758719 DOI: 10.1016/j.curtheres.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Background Relebactam, previously known as MK-7655, is currently being tested in combination with imipenem as a class A and class C β-lactamase inhibitor, including KPC from Klebsiella pneumoniae. Objective The objective of the current study was to evaluate the activity of imipenem/relebactam against gram-negative bacilli. Methods After applying exclusion and inclusion criteria, 72 articles with full texts that describe the prevalence of imipenem/relebactam resistance were chosen for the meta-analysis and systematic review. Articles published between January 2015 and February 2023 were surveyed. The systematic literature search was conducted in PubMed, Web of Science, Google Scholar, and Scopus. Results The pooled estimation of 282,621 sample isolates revealed that the prevalence rate of imipenem/relebactam resistance is roughly 14.6% (95% CI, 0.116%-0.182%). Conclusions The findings of this analysis show that imipenem/relebactam resistance is rare in the majority of developed countries. Given that relebactam has proven to restore the activity of imipenem against current clinical isolates, further research into imipenem/relebactam is necessary.
Collapse
Affiliation(s)
- Reza Abniki
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melika Masoudi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Dettori S, Portunato F, Vena A, Giacobbe DR, Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Curr Opin Crit Care 2023; 29:438-445. [PMID: 37641512 PMCID: PMC10919274 DOI: 10.1097/mcc.0000000000001074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) poses a significant global health concern, contributing to increased infections, mortality rates, and healthcare costs. This review discusses the main clinical manifestations, therapeutic options, and recent findings in managing antibiotic-resistant GNB, with a focus on difficult-to-treat infections. RECENT FINDINGS Difficult-to-treat resistance (DTR) is a novel classification that identifies GNB exhibiting intermediate or resistant phenotypes to first-line agents in the carbapenem, beta-lactam, and fluoroquinolone categories. The main pathogens implicated in severe infections include DTR Enterobacterales, DTR Pseudomonas aeruginosa , and DTR Acinetobacter baumannii. Although the clinical implications of DTR strains are still under investigation, certain studies have linked them to prolonged hospital stays and poor patient outcomes. SUMMARY Severe infections caused by DTR-GNB pose a formidable challenge for healthcare providers and represent a growing global health issue. The proper administration and optimization of novel antibiotics at our disposal are of paramount importance for combating bacterial resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Silvia Dettori
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Federica Portunato
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Emeraud C, Bernabeu S, Dortet L. In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1493. [PMID: 37887194 PMCID: PMC10604182 DOI: 10.3390/antibiotics12101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Despite the availability of new options (ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam and cefiderocol), it is still very difficult to treat infections caused by metallo-β-lactamase (MBLs)-producers resistant to aztreonam. The in vitro efficacy of aztreonam in association with avibactam, vaborbactam or relebactam was evaluated on a collection of MBL-producing Enterobacterales, MBL-producing P. aeruginosa and highly drug-resistant S. maltophilia. METHODS A total of fifty-two non-duplicate MBL-producing Enterobacterales, five MBL-producing P. aeruginosa and five multidrug-resistant S. maltophila isolates were used in this study. The minimum inhibitory concentrations (MICs) of aztreonam, meropenem-vaborbactam and imipenem-relebactam were determined by Etest® (bioMérieux, La Balme-les-Grottes) according to EUCAST recommendations. For aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam associations, the MICs were determined using Etest® on Mueller-Hinton (MH) agar supplemented with 8 mg/L of avibactam, 8 mg/L of vaborbactam and 4 mg/L of relebactam. The MICs were interpreted according to EUCAST guidelines. RESULTS The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a standard exposure of aztreonam (1g × 3, IV) were 84.6% (44/52), 55.8% and 34.6% for Enterobacterales and 0% for all combinations for P. aeruginosa and S. maltophila. The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a high exposure of aztreonam (2g × 4, IV) were 92.3%, 78.9% and 57.7% for Enterobacterales, 75%, 60% and 60% for P. aeruginosa and 100%, 100% and 40% for S. maltophila. CONCLUSIONS As previously demonstrated for an aztreonam/ceftazidime-avibactam combination, aztreonam plus imipenem-relebactam and aztreonam plus meropenem-vaborbactam might be useful options, but with potentially lower efficiency, to treat infections caused by aztreonam-non-susceptible MBL-producing Gram-negative strains.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
15
|
Tiseo G, Suardi LR, Leonildi A, Giordano C, Barnini S, Falcone M. Meropenem/vaborbactam plus aztreonam for the treatment of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae infections. J Antimicrob Chemother 2023; 78:2377-2379. [PMID: 37392133 DOI: 10.1093/jac/dkad206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023] Open
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Lorenzo Roberto Suardi
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | | | - Cesira Giordano
- Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Simona Barnini
- Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
16
|
Aslan AT, Ezure Y, Horcajada JP, Harris PNA, Paterson DL. In vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam monotherapy with ceftazidime-avibactam-containing combination regimens against carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa isolates or infections: a scoping review. Front Med (Lausanne) 2023; 10:1249030. [PMID: 37727767 PMCID: PMC10506411 DOI: 10.3389/fmed.2023.1249030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacterales (CRE) and multidrug-resistant Pseudomonas aeruginosa (MDR-PA) infections are associated with a high risk of morbidity, mortality, and treatment costs. We aimed to evaluate in vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam (CZA) combination regimens with CZA alone against CRE and/or MDR-PA isolates or infections. Methods We systematically reviewed the relevant literature in CINAHL/MEDLINE, Pubmed, Cochrane, Web of Science, Embase, and Scopus until December 1, 2022. Review articles, grey literature, abstracts, comments, editorials, non-peer reviewed articles, non-English articles, and in vitro synergy studies conducted on single isolates were excluded. Results 22 in vitro, 7 in vivo and 20 clinical studies were evaluated. In vitro studies showed reliable synergy between CZA and aztreonam against metallo-β-lactamase (MBL)-producing isolates. Some studies indicated good in vitro synergy between CZA and amikacin, meropenem, fosfomycin and polymyxins against CRE isolates. For MDR-PA isolates, there are comparatively fewer in vitro or in vivo studies. In observational clinical studies, mortality, clinical cure, adverse events, and development of CZA resistance after exposure were generally similar in monotherapy and combination therapy groups. However, antibiotic-related nephrotoxicity and infection relapses were higher in patients receiving CZA combination therapies. Discussion The benefit, if any, of CZA combination regimens in MDR-PA infections is elusive, as very few clinical studies have included these infections. There is no currently documented clinical benefit for the use of CZA combination regimens rather than CZA monotherapy. CZA combined with aztreonam for serious infections due to MBL producers should be evaluated by randomized controlled trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278552, CRD42021278552.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yukiko Ezure
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Juan Pablo Horcajada
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Infectious Diseases Department, Hospital del Mar, Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick N. A. Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David L. Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Zeng M, Xia J, Zong Z, Shi Y, Ni Y, Hu F, Chen Y, Zhuo C, Hu B, Lv X, Li J, Liu Z, Zhang J, Yang W, Yang F, Yang Q, Zhou H, Li X, Wang J, Li Y, Ren J, Chen B, Chen D, Wu A, Guan X, Qu J, Wu D, Huang X, Qiu H, Xu Y, Yu Y, Wang M. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:653-671. [PMID: 36868960 DOI: 10.1016/j.jmii.2023.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The dissemination of carbapenem-resistant Gram-negative bacilli (CRGNB) is a global public health issue. CRGNB isolates are usually extensively drug-resistant or pandrug-resistant, resulting in limited antimicrobial treatment options and high mortality. A multidisciplinary guideline development group covering clinical infectious diseases, clinical microbiology, clinical pharmacology, infection control, and guideline methodology experts jointly developed the present clinical practice guidelines based on best available scientific evidence to address the clinical issues regarding laboratory testing, antimicrobial therapy, and prevention of CRGNB infections. This guideline focuses on carbapenem-resistant Enterobacteriales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Sixteen clinical questions were proposed from the perspective of current clinical practice and translated into research questions using PICO (population, intervention, comparator, and outcomes) format to collect and synthesize relevant evidence to inform corresponding recommendations. The grading of recommendations, assessment, development and evaluation (GRADE) approach was used to evaluate the quality of evidence, benefit and risk profile of corresponding interventions and formulate recommendations or suggestions. Evidence extracted from systematic reviews and randomized controlled trials (RCTs) was considered preferentially for treatment-related clinical questions. Observational studies, non-controlled studies, and expert opinions were considered as supplementary evidence in the absence of RCTs. The strength of recommendations was classified as strong or conditional (weak). The evidence informing recommendations derives from studies worldwide, while the implementation suggestions combined the Chinese experience. The target audience of this guideline is clinician and related professionals involved in management of infectious diseases.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 200032, China
| | - Jun Xia
- The Nottingham Ningbo GRADE Centre, University of Nottingham Ningbo China, Ningbo, China; Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Chao Zhuo
- Department of Infectious Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Wenjie Yang
- Department of Infectious Diseases, Tianjin First Center Hospital, Tianjin 300192, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Qiwen Yang
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha 410015, China
| | - Jianhua Wang
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yimin Li
- Department of Critical Care Medicine,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jian'an Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Baiyi Chen
- Divison of Infectious Diseases, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing 100044, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yingchun Xu
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China.
| |
Collapse
|
18
|
Ayipo YO, Chong CF, Mordi MN. Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities. RSC Med Chem 2023; 14:1012-1048. [PMID: 37360393 PMCID: PMC10285742 DOI: 10.1039/d3md00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/31/2023] [Indexed: 09/20/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria
| | - Chien Fung Chong
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman 31900 Kampar Perak Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
| |
Collapse
|
19
|
Wilhelm CM, Inamine E, Martins AF, Barth AL. Evaluation of Aztreonam and Ceftazidime/Avibactam Synergism against Klebsiella pneumoniae by MALDI-TOF MS. Antibiotics (Basel) 2023; 12:1063. [PMID: 37370382 DOI: 10.3390/antibiotics12061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Resistance to carbapenems due to the co-production of NDM and ESBL or NDM and KPC is increasing. Therefore, combined therapy with aztreonam (ATM) plus ceftazidime/avibactam (CZA) has been recommended. Then, it is necessary to develop and evaluate fast and simple methods to determine synergism in vitro in microbiology laboratories. OBJECTIVE To develop a method to determine the synergism of ATM and CZA by MALDI-TOF MS (SynMALDI). METHOD Klebsiella pneumoniae (n = 22) isolates with blaNDM and/or blaKPC genes were tested. The time-kill curve assay was performed for four isolates (three positives for blaNDM and blaKPC and one positive for blaNDM only). For SynMALDI, each isolate was incubated for 3 h in 4 tubes containing brain-heart infusion broth with the following: (1) no antibiotic; (2) ATM at 64 mg/L; (3) CZA at 10/4 mg/L; and (4) ATM at 64 mg/L plus CZA at 10/4 mg/L. After incubation, the bacterial protein extract was analyzed by MALDI-TOF MS, and the relative growth (RG) was determined for each isolate, considering intensities of the peaks of the bacterium incubated with antibiotic (tubes 2, 3, and 4) to the same bacterium incubated without antibiotic (tube 1), as follows: RG = IntensityWith antibiotic/IntensityWithout antibiotic. The combination was determined as synergistic when there was an RG decrease of 0.3 in the antibiotic combination in relation to the RG of the most active antibiotic alone. RESULTS The combination of ATM plus CZA proved to be synergic by time-kill curve assay. All isolates tested with the SynMALDI method also presented synergism. CONCLUSIONS Detection of synergism for ATM plus CZA combination can be determined by MALDI-TOF MS, providing fast results in order to improve patient treatment.
Collapse
Affiliation(s)
- Camila Mörschbächer Wilhelm
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Everton Inamine
- Laboratório Carlos Franco Voegeli, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Andreza Francisco Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Afonso Luís Barth
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| |
Collapse
|
20
|
Kuai J, Zhang Y, Lu B, Chen H, Zhang Y, Li H, Wang Y, Wang Q, Wang H, Wang X. In vitro Synergistic Activity of Ceftazidime-Avibactam in Combination with Aztreonam or Meropenem Against Clinical Enterobacterales Producing blaKPC or blaNDM. Infect Drug Resist 2023; 16:3171-3182. [PMID: 37249967 PMCID: PMC10224692 DOI: 10.2147/idr.s408228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Background It is often challenging to select appropriate combination therapies to treat infections caused by carbapenem-resistant Enterobacterales (CRE) with high-level resistance to carbapenem. Methods We investigated the in vitro synergistic activity of ceftazidime-avibactam-, polymyxin- or tigecycline-, and meropenem-based combinations using checkerboard assays against 16 CRE including Klebsiella pneumoniae carrying blaKPC-2 (CR1-blaKPC-2) and Enterobacter cloacae carrying blaNDM-1 (CR2-blaNDM-1) with meropenem MICs ≥128 mg/L. Time-kill assays were used to observe synergistic bactericidal activity. Results Meropenem in combination with ertapenem, amikacin, tigecycline or polymyxin B, and tigecycline plus ceftazidime-avibactam showed weak synergistic activities against CR1-blaKPC-2 and CR2-blaNDM-1. Polymyxin B combined with tigecycline or ceftazidime-avibactam, and ceftazidime-avibactam plus amikacin showed synergistic effects against two tigecycline-non-susceptible KPC-producers or three ceftazidime-avibactam-resistant NDM-producer, and 50% (5/10) of strains with amikacin MICs ≥4096 mg/L, respectively. Synergistic interactions of ceftazidime-avibactam plus aztreonam or meropenem in checkerboard assays were measured for 100% (16/16) and 93.8% (15/16) of strains, respectively. The time-kill assay further verified that the ceftazidime-avibactam combination had the potential to restore aztreonam susceptibility and reduced meropenem MICs to 8 mg/L. Conclusion Ceftazidime-avibactam plus aztreonam or meropenem could be an effective strategy for treating CRE infections, particularly those with high-level resistance to carbapenems and/or ceftazidime-avibactam.
Collapse
Affiliation(s)
- Junyang Kuai
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- Department of Clinical Medical Laboratory, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Boattini M, Comini S, Bianco G, Iannaccone M, Casale R, Cavallo R, Costa C. Activity of cefiderocol and synergy of novel β-lactam-β-lactamase inhibitor-based combinations against metallo-β-lactamase-producing gram-negative bacilli: insights from a two-year study (2019-2020). J Chemother 2023; 35:198-204. [PMID: 35731718 DOI: 10.1080/1120009x.2022.2090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
This study was aimed at analyzing the prevalence of metallo-β-lactamase-producing Gram-negative bacilli (MBL-GNB) and evaluating both in vitro activity of cefiderocol and synergy of novel β-lactam-β-lactamase inhibitor-based combinations. Carbapenemase-producing Enterobacterales and meropenem-non-susceptible P. aeruginosa clinical strains were collected (2019-2020) and prevalence of MBL-producers investigated. Activity of cefiderocol was evaluated and synergistic effects of cefiderocol in combination with ceftazidime/avibactam vs aztreonam plus ceftazidime/avibactam vs meropenem/vaborbactam plus aztreonam were compared. Among carbapenemase-producing Enterobacterales, 87% (n = 307) produced KPC, 11.6% (n = 41) produced MBL, and 1.4% (n = 5) produced OXA-48-like. Among MBL-producing Enterobacterales, 78.1% (n = 32) and 21.9% (n = 9) were VIM- and NDM-producers, respectively. Among meropenem-non-susceptible P. aeruginosa, 1.9% (n = 8) produced VIM-type MBL. Cefiderocol resistance rate in VIM-producing Enterobacterales, VIM-producing P. aeruginosa, and NDM-producing Enterobacterales, was 6.2%, 12.5%, and 88.9%, respectively. Among MBL-producers tested, cefiderocol in combination with ceftazidime/avibactam showed a synergy rate of 20%, while for both aztreonam plus ceftazidime/avibactam and meropenem/vaborbactam plus aztreonam was 40%. Prevalence of MBL-producing Enterobacterales was remarkable. VIM-producing isolates were almost all susceptible to cefiderocol, while NDM-producers were often resistant. Meropenem/vaborbactam in combination with aztreonam showed similar synergistic activity to ceftazidime/avibactam plus aztreonam but the addition of aztreonam reduced MICs below the resistance breakpoint only for meropenem/vaborbactam.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Sara Comini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Iannaccone
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Roberto Casale
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| |
Collapse
|
22
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
23
|
Liu Y, Liu Y, Liu Y, Chen X, Jia Y. Epidemiology, drug resistance analysis and mortality risk factor prediction of gram-negative bacteria infections in patients with allogeneic hematopoietic stem cell transplantation. Heliyon 2023; 9:e15285. [PMID: 37101646 PMCID: PMC10123215 DOI: 10.1016/j.heliyon.2023.e15285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for many malignant and refractory diseases. However, infections, as the most common complication after transplantation, often lead to poor long-term prognosis of patients. In this study, we collected electronic medical records of allo-HSCT recipients with gram-negative bacteria (GNB) infections between January 2012 and September 2021, analyzed epidemiological characteristics and antibiotic sensitivity, and determined independent risk factors for carbapenem-resistant GNB (CR-GNB) infections and death by Logistic and Cox regression models. During the 9-year period, 183 of 968 patients developed GNB infections, of which 58 died. The most common pathogen was Klebsiella pneumoniae. CR-GNB, especially carbapenem-resistant Klebsiella pneumonia (CRKP), carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-resistant Escherichia coli (CREC) had a high resistance rate to commonly used clinical antibiotics. Independent risk factors for CR-GNB infections were use of carbapenem antibiotics for >3 days one month before transplantation (OR = 3.244, 95% CI 1.428-7.369, P = 0.005), use of special immunosuppressants after transplantation (OR = 1.21, 95% CI 1.008-1.452, P = 0.041), and time of hematopoietic reconstruction >20 days (OR = 2.628, 95% CI 1.369-5.043, P = 0.004). Independent risk factors for mortality were interval between diagnosis and transplantation >180 days (HR = 2.039, 95% CI 1.05 to 3.963, P = 0.035), total bilirubin levels during infection >34.2 μmol/L (HR = 3.39, 95% CI 1.583-7.256, P = 0.002) and septic shock (HR = 5.345, 95% CI 2.655-10.761, P = 0.000). In conclusion, GNB has a high incidence and mortality in allo-HSCT recipients. Early transplantation for eligible patients, attention to liver function protection, timely identification and treatment of septic shock can help to improve the prognosis of patients.
Collapse
|
24
|
Faccone D, Gomez SA, de Mendieta JM, Sanz MB, Echegorry M, Albornoz E, Lucero C, Ceriana P, Menocal A, Martino F, De Belder D, Corso A, Pasterán F. Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12030479. [PMID: 36986401 PMCID: PMC10052147 DOI: 10.3390/pathogens12030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The global spread of carbapenemase-producing Enterobacterales has become an epidemiological risk for healthcare systems by limiting available antimicrobial treatments. The COVID-19 pandemic worsened this scenario, prompting the emergence of extremely resistant microorganisms. METHODS Between March 2020 and September 2021, the NRL confirmed 82 clinical Enterobacterales isolates harboring a combination of blaKPC and MBL genes. Molecular typing was analyzed by PFGE and MLST. Modified double-disk synergy (MDDS) tests were used for phenotypic studies. RESULTS Isolates were submitted from 28 hospitals located in seven provinces and Buenos Aires City, including 77 K. pneumoniae, 2 K. oxytoca, 2 C. freundii, and 1 E. coli. Almost half of K. pneumoniae isolates (n = 38; 49.4%), detected in 15 hospitals, belong to the CC307 clone. CC11 was the second clone, including 29 (37.7%) isolates (22, ST11 and 7, ST258) from five cities and 12 hospitals. Three isolates belonging to CC45 were also detected. The carbapenemase combinations observed were as follows: 55% blaKPC-2 plus blaNDM-5; 32.5% blaKPC-2 plus blaNDM-1; 5% blaKPC-3 plus blaNDM-1; 5% blaKPC-2 plus blaIMP-8; and 2.5% strain with blaKPC-2 plus blaNDM-5 plus blaOXA-163. Aztreonam/avibactam and aztreonam/relebactam were the most active combinations (100% and 91% susceptible, respectively), followed by fosfomycin (89%) and tigecycline (84%). CONCLUSIONS The MDDS tests using ceftazidime-avibactam/EDTA and aztreonam/boronic acid disks improved phenotypic classification as dual producers. The successful high-risk clones of K. pneumoniae, such as hyper-epidemic CC307 and CC11 clones, drove the dissemination of double carbapenemase-producing isolates during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Diego Faccone
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Sonia A Gomez
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - María Belén Sanz
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Mariano Echegorry
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Paola Ceriana
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Alejandra Menocal
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Florencia Martino
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires City 2290 (C1425FQB), Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| | - Fernando Pasterán
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS "Dr. Carlos G. Malbrán", Ave. Velez Sarsfield, 563, Buenos Aires City 1281, Argentina
| |
Collapse
|
25
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
26
|
Mantzana P, Protonotariou E, Kassomenaki A, Meletis G, Tychala A, Keskilidou E, Arhonti M, Katsanou C, Daviti A, Vasilaki O, Kagkalou G, Skoura L. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12010093. [PMID: 36671295 PMCID: PMC9855173 DOI: 10.3390/antibiotics12010093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are commonly used as the last resort for the treatment of MDR Acinetobacter baumannii and Klebsiella pneumoniae nosocomial infections; however, apart from the already known toxicity issues, resistance to these agents is emerging. In the present study, we assessed the in vitro synergistic activity of antimicrobial combinations against carbapenem-resistant and colistin-resistant A. baumannii and K. pneumoniae in an effort to provide more options for their treatment. Two hundred A. baumannii and one hundred and six K. pneumoniae single clinical isolates with resistance to carbapenems and colistin, recovered between 1 January 2021 and 31 July 2022,were included. A. baumannii were tested by the MIC test strip fixed-ratio method for combinations of colistin with either meropenem or rifampicin or daptomycin. K. pneumoniae were tested for the combinations of colistin with meropenem and ceftazidime/avibactam with aztreonam. Synergy was observed at: 98.99% for colistin and meropenem against A. baumannii; 91.52% for colistin and rifampicin; and 100% for colistin and daptomycin. Synergy was also observed at: 73.56% for colistin and meropenem against K. pneumoniae and; and 93% for ceftazidime/avibactam with aztreonam. The tested antimicrobial combinations presented high synergy rates, rendering them valuable options against A. baumannii and K. pneumoniae infections.
Collapse
|
27
|
Lombardi G, Tanzarella E, Cutuli S, De Pascale G. Treatment of severe infections caused by ESBL or carbapenemases-producing Enterobacteriaceae. Med Intensiva 2023. [DOI: 10.1016/j.medin.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Lombardi G, Tanzarella ES, Cutuli SL, De Pascale G. Treatment of severe infections caused by ESBL or carbapenemases-producing Enterobacteriaceae. Med Intensiva 2023; 47:34-44. [PMID: 36202744 DOI: 10.1016/j.medine.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/02/2023]
Abstract
Enterobacteriaceae are the most frequent pathogens in the Intensive Care Unit. Due to their safety and activity, β-Lactams (BL) and carbapenems represented the most common strategy adopted against these germs. The increasing exposure to these molecules led to the development of several types of antimicrobial resistance as the expression of extended-spectrum β-lactamases (ESBLs) and carbapenemases. Great molecular variability exists among these enzymes, with significant clinical impact. To limit morbidity and mortality, old antibiotics were tested and represent viable alternatives for specific types of infections, or once the spectrum of susceptibility of each germ has been determined. Alongside, new molecules have been specifically designed but enzyme molecular variability prevents the existence of one single antibiotic which fits for all. Therefore, a quicker identification of the molecular identity of each germ, together with the knowledge of the activity spectrum of each antibiotic is crucial to tailor the therapy and make it effective.
Collapse
Affiliation(s)
- G Lombardi
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E S Tanzarella
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S L Cutuli
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G De Pascale
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
29
|
Lu G, Tang H, Xia Z, Yang W, Xu H, Liu Z, Ni S, Wang Z, Shen J. In vitro and in vivo Antimicrobial Activities of Ceftazidime/Avibactam Alone or in Combination with Aztreonam Against Carbapenem-Resistant Enterobacterales. Infect Drug Resist 2022; 15:7107-7116. [PMID: 36506837 PMCID: PMC9733440 DOI: 10.2147/idr.s385240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction To examine the in vitro and in vivo antimicrobial activities of ceftazidime/avibactam (CZA) alone or in combination with aztreonam (ATM) against KPC-, NDM-, IMP-, KPC+IMP-, KPC+NDM-producing strains. Methods A total of 67 clinical non-repetitive carbapenem-resistant Enterobacterales (CRE) strains were selected for the microdilution broth method that was performed to analyze the minimal inhibitory concentration (MIC) and the combination antimicrobial susceptibility test using checkerboard titration method. The fractional inhibitory concentration (FIC) was calculated to determine the antimicrobial effect. The time-kill assays and the mouse infection model were used to study the bactericidal effect and therapeutic effect of CZA alone or in combination with ATM. Results The CZA minimal inhibitory concentration (MIC) values of CZA revealed that 29 KPC-producing strains and 1 OXA-producing strain were ≤4µg/mL. The CZA MIC values of 37 metal-β-lactamase (MBLs)-producing strains such as NDM-, IMP-, KPC+IMP-, KPC+NDM-producing strains were ≥128µg/mL, after combining with ATM, the FIC values were all below 0.51. The time-kill assays revealed that CZA at various concentrations of 2, 4 and 8 MIC showed significant bactericidal efficiency to the KPC-producing strains. For NDM-, IMP-producing strains, no colony growth was detected after 8 hours of incubation with CZA in combination with ATM. Six percent of the mice in the treatment group and 58% of the mice in the infection group died within 3 days. Conclusion Our in vitro results showed that CZA had a good antimicrobial effect on the KPC-producing and OXA-producing strains. CZA combined with ATM showed synergistic bacteriostatic or bactericidal activity against NDM-, IMP-, KPC+IMP-, KPC+NDM-producing strains. The combination of CZA and ATM reduced mortality and prolonged lifespan of mice infected with NDM-, IMP-, KPC+IMP-, and KPC+NDM-producing strains, which provides fundamental knowledge for improving treatment strategies and initializing clinical trials.
Collapse
Affiliation(s)
- Guoping Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China,Department of Laboratory Medicine, The Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, People’s Republic of China
| | - Hao Tang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhaoxin Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Wensu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Zhen Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Shenwang Ni
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Zhaofei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China,Correspondence: Jilu Shen, The First Affiliated Hospital of Anhui Medical University; Anhui Public Health Clinical Center, Hefei, People’s Republic of China, Email
| |
Collapse
|
30
|
How to use new antibiotics in the therapy of serious multidrug resistant Gram-negative infections? Curr Opin Infect Dis 2022; 35:561-567. [PMID: 36345853 DOI: 10.1097/qco.0000000000000858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW Multidrug resistant Gram-negative infections are becoming more common and pose a serious threat to both individual patients and the population as a whole. Treatment of these infections can be difficult and result in significant morbidity and mortality. The purpose of this review is to discuss information and strategies for using new antibiotics to combat these infections. RECENT FINDINGS Eight new antibiotics represent possible means to treat multidrug resistant Gram-negative infections. Although no new mechanisms of action are present amongst these new antibiotics, novel additions to previously utilized mechanisms have been shown to be viable options for treatment of highly resistant organisms. SUMMARY The novel antibiotics considered in this review have varying data on their use as empiric treatment of patients at high risk for multidrug resistant organisms and as final therapy for identified multidrug resistant organisms. Cefiderocol, ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, and imipenem-relabactam have the best support evidence for use in this patient population.
Collapse
|
31
|
Liu S, Lin Q, Ouyang L, Zhou C, Wang H. Successful treatment of ceftazidime/avibactam combined with aztreonam in the NDM-producing Klebsiella pneumoniae bloodstream and intestinal infections in a NK/T lymphoma patient with agranulocytosis during autologous hematopoietic stem cell transplantation: a case report. Eur J Clin Microbiol Infect Dis 2022:10.1007/s10096-022-04523-3. [PMID: 36371600 PMCID: PMC9660021 DOI: 10.1007/s10096-022-04523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
New Delhi metallo-beta-lactamase (NDM)-producing Klebsiella pneumoniae is increasingly reported worldwide. Clinicians face significant challenges in the treatment of this multidrug-resistant bacterium. The combination of ceftazidime/avibactam (CAZ/AVI) and aztreonam (ATM) is currently probably the most effective strategy for the treatment of such infection. We described a patient diagnosed with NK/T cell lymphoma who underwent autologous hematopoietic stem cell transplantation (ASCT) in the hematology department. The patient developed severe infection after ASCT. Blood and stool cultures showed carbapenem-resistant K. pneumoniae. Blood sample was detected as NDM-producing K. pneumoniae. We successfully treated this infection with CAZ/AVI and ATM.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qingqing Lin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lizhi Ouyang
- Department of Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chengjie Zhou
- Department of Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huajun Wang
- Department of Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
32
|
Shrief R, El-Ashry AH, Mahmoud R, El-Mahdy R. Effect of Colistin, Fosfomycin and Meropenem/Vaborbactam on Carbapenem-Resistant Enterobacterales in Egypt: A Cross-Sectional Study. Infect Drug Resist 2022; 15:6203-6214. [PMID: 36324668 PMCID: PMC9621046 DOI: 10.2147/idr.s385411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose The increasing multi-drug carbapenem resistance among Enterobacterales are a severe health problem limiting therapeutic options and worsen the prognosis. This study characterizes carbapenemase genes and integrons among uropathogenic carbapenem resistant Enterobacterales (CRE) isolates recovered from Mansoura University Hospitals and evaluates the effect of colistin, fosfomycin and meropenem-vaborbactam on these isolates. Patients and Methods A total of 200 Enterobacterales isolates were collected from patients with urinary tract infections. Antimicrobial susceptibility testing was performed by the disc diffusion method. Colistin susceptibility was tested using the broth microdilution method and fosfomycin and meropenem/vaborbactam susceptibility were tested by MIC Test Strips. Carbapenem resistant isolates were screened for carbapenemase activity phenotypically using the modified carbapenem inactivation method and EDTA-modified carbapenem inactivation method and genotypically by multiplex PCR. Integrons class 1 and 2 and fosA gene were assayed by PCR. Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 16. The Chi-square or Fisher's exact test was used to compare groups, as appropriate. Results Ninety-two Enterobacterales isolates were resistant to meropenem (46%); 52 E. coli and 40 K. pneumoniae strains. All CRE isolates were multi-drug resistant (MDR). Sensitivity of CRE isolates to colistin, fosfomycin and meropenem/vaborbactam were 67.4%, 82.6% and 58.7%, respectively. Carbapenemase genes were detected by multiplex PCR in 69.6% of CRE isolates (Carbapenemase producing Enterobacterales (CPE) mainly blaNDM (37%). CPE isolates were significantly more resistant to meropenem/vaborbactam than non-CPE isolates; 51.6% vs 17.8%, respectively (P = 0.003) especially blaNDM carrying isolates (70.6%). Class 1 integrons and fosA gene were detected in 91.3% and 11.9% of CRE isolates, respectively. Conclusion This study revealed that about half of the uropathogenic Enterobacterales isolates were MDR CRE. Carbapenemase gene blaNDM was the main gene among CRE isolates. Meropenem/vaborbactam sensitivity was significantly higher on non-CPE than CPE isolates and limited by the predominance of blaNDM .
Collapse
Affiliation(s)
- Raghdaa Shrief
- Medical Microbiology and Immunology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Amira H El-Ashry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Mahmoud
- Internal Medicine Department, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha El-Mahdy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
34
|
Li X, Zhao J, Zhang B, Duan X, Jiao J, Wu W, Zhou Y, Wang H. Drug development concerning metallo-β-lactamases in gram-negative bacteria. Front Microbiol 2022; 13:959107. [PMID: 36187949 PMCID: PMC9520474 DOI: 10.3389/fmicb.2022.959107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
β-Lactams have been a clinical focus since their emergence and indeed act as a powerful tool to combat severe bacterial infections, but their effectiveness is threatened by drug resistance in bacteria, primarily by the production of serine- and metallo-β-lactamases. Although once of less clinical relevance, metallo-β-lactamases are now increasingly threatening. The rapid dissemination of resistance mediated by metallo-β-lactamases poses an increasing challenge to public health worldwide and comprises most existing antibacterial chemotherapies. Regrettably, there have been no clinically available inhibitors of metallo-β-lactamases until now. To cope with this unique challenge, researchers are exploring multidimensional strategies to combat metallo-β-lactamases. Several studies have been conducted to develop new drug candidates or calibrate already available drugs against metallo-β-lactamases. To provide an overview of this field and inspire more researchers to explore it further, we outline some promising candidates targeting metallo-β-lactamase producers, with a focus on Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Promising candidates in this review are composed of new antibacterial drugs, non-antibacterial drugs, antimicrobial peptides, natural products, and zinc chelators, as well as their combinations with existing antibiotics. This review may provide ideas and insight for others to explore candidate metallo-β-lactamases as well as promote the improvement of existing data to obtain further convincing evidence.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jing Zhao
- Pharmaceutical Department, Shandong Provincial Taishan Hospital, Taian, China
| | - Bin Zhang
- Department of Ophthalmology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Xuexia Duan
- Physical Examination Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jin Jiao
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Weiwei Wu
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Yuxia Zhou
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
- *Correspondence: Yuxia Zhou
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
- Hefeng Wang
| |
Collapse
|
35
|
Abstract
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel β-lactam/β-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved β-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer β-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Collapse
|
36
|
Meropenem/Vaborbactam Plus Aztreonam as a Possible Treatment Strategy for Bloodstream Infections Caused by Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae: A Retrospective Case Series and Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11030373. [PMID: 35326836 PMCID: PMC8944480 DOI: 10.3390/antibiotics11030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives: The aim of this study was to describe our experience of a combination treatment including meropenem/vaborbactam (M/V) plus aztreonam (ATM) for bloodstream infections (BSIs) due to ceftazidime/avibactam-resistant Klebsiella pneumoniae (CAZ/AVI-R-Kp), for which gene typing was not available at the time the blood culture (BC) results were obtained. Methods: Between 20 July and 22 August 2021, in our hospital laboratory, the molecular test for carbapenemase gene typing was not available. All Gram-negative bloodstream infections were recorded, and characteristics of patients were analysed. Among them, three patients had positive BCs for CAZ/AVI-R-Kp, and the empirical therapy was switched to M/V plus ATM pending phenotypic testing of sensitivity to M/V. Therapy was subsequently targeted on the basis of the results of this test. Results: KPC and NDM represent the most prevalent carbapenemases in our polyclinic. Three patients with CAZ/AVI-R-Kp sepsis were treated with M/V plus ATM not knowing the carbapenemase gene. Two had an NDM-Kp infection for which, upon obtaining the result of sensitivity to M/V, combination therapy was maintained. The third had KPC-Kp infection for which ATM was discontinued, after the acquisition of an antibiogram reporting full sensitivity to M/V (MIC = 0.25 mg/L). One patient with NDM-Kp infection died due to complications of the underlying disease for which he was hospitalised. Conclusions: Meropenem/vaborbactam plus ATM and subsequent de-escalation could represent a possible therapeutic strategy in severe CAZ/AVI-R-Kp infections when carbapenemase gene typing is not rapidly available.
Collapse
|
37
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
38
|
Volpicelli L, Venditti M, Ceccarelli G, Oliva A. Place in Therapy of the Newly Available Armamentarium for Multi-Drug-Resistant Gram-Negative Pathogens: Proposal of a Prescription Algorithm. Antibiotics (Basel) 2021; 10:antibiotics10121475. [PMID: 34943687 PMCID: PMC8698671 DOI: 10.3390/antibiotics10121475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
The worldwide propagation of antimicrobial resistance represents one of the biggest threats to global health and development. Multi-drug-resistant organisms (MDROs), including carbapenem-resistant non-fermenting Gram-negatives and Enterobacterales, present a heterogeneous and mutating spread. Infections by MDRO are often associated with an unfavorable outcome, especially among critically ill populations. The polymyxins represented the backbone of antibiotic regimens for Gram-negative MDROs in recent decades, but their use presents multiple pitfalls. Luckily, new agents with potent activity against MDROs have become available in recent times and more are yet to come. Now, we have the duty to make the best use of these new therapeutic tools in order not to prematurely compromise their effectiveness and at the same time improve patients’ outcomes. We reviewed the current literature on ceftazidime/avibactam, meropenem/vaborbactam and cefiderocol, focusing on antimicrobial spectrum, on the prevalence and mechanisms of resistance development and on the main in vitro and clinical experiences available so far. Subsequently, we performed a step-by-step construction of a speculative algorithm for a reasoned prescription of these new antibiotics, contemplating both empirical and targeted use. Attention was specifically posed on patients with life-risk conditions and in settings with elevated prevalence of MDRO.
Collapse
|
39
|
Morroni G, Bressan R, Fioriti S, D’Achille G, Mingoia M, Cirioni O, Di Bella S, Piazza A, Comandatore F, Mauri C, Migliavacca R, Luzzaro F, Principe L, Lagatolla C. Antimicrobial Activity of Aztreonam in Combination with Old and New β-Lactamase Inhibitors against MBL and ESBL Co-Producing Gram-Negative Clinical Isolates: Possible Options for the Treatment of Complicated Infections. Antibiotics (Basel) 2021; 10:1341. [PMID: 34827279 PMCID: PMC8615000 DOI: 10.3390/antibiotics10111341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are among the most challenging bacterial enzymes to overcome. Aztreonam (ATM) is the only β-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum β-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new β-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time-kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM-BLI combination. ATM-BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Raffaela Bressan
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (C.L.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Gloria D’Achille
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy;
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (R.M.)
| | - Francesco Comandatore
- Department of Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Carola Mauri
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (R.M.)
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, S. Giovanni di Dio Hospital, 88900 Crotone, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (C.L.)
| |
Collapse
|
40
|
Mauri C, Maraolo AE, Di Bella S, Luzzaro F, Principe L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics (Basel) 2021; 10:1012. [PMID: 34439062 PMCID: PMC8388901 DOI: 10.3390/antibiotics10081012] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Infections caused by metallo-β-lactamase (MBL)-producing Enterobacterales and Pseudomonas are increasingly reported worldwide and are usually associated with high mortality rates (>30%). Neither standard therapy nor consensus for the management of these infections exist. Aztreonam, an old β-lactam antibiotic, is not hydrolyzed by MBLs. However, since many MBL-producing strains co-produce enzymes that could hydrolyze aztreonam (e.g., AmpC, ESBL), a robust β-lactamase inhibitor such as avibactam could be given as a partner drug. We performed a systematic review including 35 in vitro and 18 in vivo studies on the combination aztreonam + avibactam for infections sustained by MBL-producing Gram-negatives. In vitro data on 2209 Gram-negatives were available, showing the high antimicrobial activity of aztreonam (MIC ≤ 4 mg/L when combined with avibactam) in 80% of MBL-producing Enterobacterales, 85% of Stenotrophomonas and 6% of MBL-producing Pseudomonas. Clinical data were available for 94 patients: 83% of them had bloodstream infections. Clinical resolution within 30 days was reported in 80% of infected patients. Analyzing only patients with bloodstream infections (64 patients), death occurred in 19% of patients treated with aztreonam + ceftazidime/avibactam. The combination aztreonam + avibactam appears to be a promising option against MBL-producing bacteria (especially Enterobacterales, much less for Pseudomonas) while waiting for new antimicrobials.
Collapse
Affiliation(s)
- Carola Mauri
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Alberto Enrico Maraolo
- First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Science, Trieste University, 34128 Trieste, Italy;
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
| |
Collapse
|
41
|
Matteoli FP, Pedrosa-Silva F, Dutra-Silva L, Giachini AJ. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 2021; 113:3523-3532. [PMID: 34400240 DOI: 10.1016/j.ygeno.2021.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.
Collapse
|
42
|
Adams KK, McManus D, Topal J, Shah S. Re-evaluating aztreonam and ceftazidime hypersensitivity: fraternal not identical twins. J Antimicrob Chemother 2021; 76:2741-2743. [PMID: 34189570 DOI: 10.1093/jac/dkab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kathleen K Adams
- University of Connecticut School of Pharmacy, 69 North Eagleville Road, Storrs Mansfield, CT 06269, USA
| | - Dayna McManus
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, 20 York Street, New Haven, CT 06510, USA
| | - Jeffrey Topal
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, 20 York Street, New Haven, CT 06510, USA.,Yale University School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, 333 Cedar Street, New Haven, CT 06510, USA
| | - Sunish Shah
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, 20 York Street, New Haven, CT 06510, USA.,University of Pittsburgh Medical Center, Antimicrobial Management Program, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40:2053-2068. [PMID: 34169446 DOI: 10.1007/s10096-021-04296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing threat to human health worldwide. CRE often carry multiple resistance genes that limit treatment options and require longer durations of therapy, are more costly to treat, and necessitate therapies with increased toxicities when compared with carbapenem-susceptible strains. Here, we provide an overview of the mechanisms of resistance in CRE, the epidemiology of CRE infections worldwide, and available treatment options for CRE. We review recentlyapproved agents for the treatment of CRE, including ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and novel aminoglycosides and tetracyclines. We also discuss recent advances in phage therapy and antibiotics that are currently in development targeted to CRE. The potential for the development of resistance to these therapies remains high, and enhanced antimicrobial stewardship is imperative both to reduce the spread of CRE worldwide and to ensure continued access to efficacious treatment options.
Collapse
Affiliation(s)
- Kathleen Tompkins
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - David van Duin
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Tan SH, Koomanan N, Chung SJ, Kwa ALH. Will ceftazidime-avibactam replace polymyxins in Asia? Clin Infect Dis 2021; 73:1743-1744. [PMID: 34009275 DOI: 10.1093/cid/ciab390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sock Hoon Tan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Narendran Koomanan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Shimin Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
45
|
Vrancianu CO, Dobre EG, Gheorghe I, Barbu I, Cristian RE, Chifiriuc MC. Present and Future Perspectives on Therapeutic Options for Carbapenemase-Producing Enterobacterales Infections. Microorganisms 2021; 9:730. [PMID: 33807464 PMCID: PMC8065494 DOI: 10.3390/microorganisms9040730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are included in the list of the most threatening antibiotic resistance microorganisms, being responsible for often insurmountable therapeutic issues, especially in hospitalized patients and immunocompromised individuals and patients in intensive care units. The enzymatic resistance to carbapenems is encoded by different β-lactamases belonging to A, B or D Ambler class. Besides compromising the activity of last-resort antibiotics, CRE have spread from the clinical to the environmental sectors, in all geographic regions. The purpose of this review is to present present and future perspectives on CRE-associated infections treatment.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Elena Georgiana Dobre
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Ilda Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|