1
|
Luo F, Xu C, Zhang C, Tan A, Lu D, Luo P, Cheng P, Zhang W, Bai L, Yu C, Sun S, Zeng H, Zou Q. mRNA-based platform for preventing and treating Staphylococcus aureus by targeted staphylococcal enterotoxin B. Front Immunol 2024; 15:1490044. [PMID: 39640268 PMCID: PMC11617584 DOI: 10.3389/fimmu.2024.1490044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus (S. aureus) possesses numerous virulence factors, with the increasing prevalence of drug-resistant strains heightening the threat posed by this pathogen. Staphylococcal enterotoxin B (SEB), a highly conserved toxin secreted by S. aureus, is also recognized as a potential bioweapon with super-antigenic activity. SEB represents a promising target in efforts to combat infections caused by S. aureus. We developed mRNA-based vaccine and antibody targeting SEB for both prophylactic and therapeutic purposes in varying S. aureus infection conditions. The mSEB mRNA vaccine (10 μg per mouse) induces more robust and persistent immune responses, including higher antibody titers and specific cellular immune responses, compared to immunization with 30 μg of mSEB protein adjuvanted with aluminum phosphate. Additionally, the anti-SEB mRNA antibody maintains secretion of anti-SEB monoclonal antibody (mAb) with a dosage that is 10 times lower than purified protein administration. The mRNA-based antibody exhibits superior pharmacokinetic profiles compared to its protein counterparts, efficiently neutralizing SEB and clearing S. aureus from circulation. Both the mRNA vaccine and mRNA antibody demonstrate preventive and therapeutic effects by eliciting specific immune responses and generating high-affinity antibodies in mice. We have laid the groundwork for the development and evaluation of mRNA-based vaccines and antibodies targeting SEB produced by S. aureus. Our studies demonstrate that these approaches are more effective than traditional protein-based vaccines and antibodies in terms of inducing immune responses, pharmacokinetics, and their prophylactic or therapeutic efficacy against S. aureus infections.
Collapse
Affiliation(s)
- Fumei Luo
- School of Pharmacy, University of South China, Hunan, China
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Chengwen Zhang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Aomo Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Lijuan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Cuiyun Yu
- School of Pharmacy, University of South China, Hunan, China
| | - Si Sun
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
3
|
Al-Iede M, Ayyad DM, Etoom RA, Aldameiry RH, Toubasi AA. The prevalence and risk factors of methicillin-resistant Staphylococcus aureus among pediatric populations: a systematic review and meta-analysis. Eur J Pediatr 2024; 183:3679-3687. [PMID: 38970703 DOI: 10.1007/s00431-024-05672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
There is scarcity in the data about MRSA prevalence and risk factors among the pediatric population. This research explores the global prevalence and risk factors of MRSA among the pediatric population. PubMed, Scopus, Web of Sciences, and the Cochrane Central Register of Controlled Trials were systematically searched. Our primary goal was to assess the prevalence of MRSA colonization and its related risk factors in the general pediatric population. A total of 124 studies encompassing 44 million participants were included in this meta-analysis, and the overall pooled estimated global prevalence of MRSA colonization in pediatric was 5% [95% CI 4-5%]. Female sex (OR = 4.17; 95% CI, 3.31-5.27), recent surgery (OR = 3.79; 95% CI, 2.20-6.52), recent hospitalization (OR = 2.63; 95% CI, 1.78-3.86), and antibiotic use (OR = 2.42; 95% CI, 1.58-3.72) were significantly associated with higher odds of MRSA colonization. CONCLUSION Future research should build on these findings by emphasizing ongoing efforts to combat MRSA in pediatric settings and implementing targeted interventions. WHAT IS KNOWN • Methicillin-resistant Staphylococcus aureus (MRSA) is considered a threat to public health. It is noteworthy to mention that the prevalence of MRSA strains has not been adequately quantified in many countries, especially in the pediatric population. The pediatric population is a pivotal source of MRSA and may play a central role in its distribution in both community and healthcare settings. A notable study underscores the gravity of the situation, estimating a tenfold increase in the incidence of MRSA infection among children in the USA between 1999 and 2008. WHAT IS NEW • Here we present the first global systematic review and meta-analysis to investigate the prevalence and risk factors of MRSA among the pediatric population. A total of 124 studies encompassing 44 million participants were included in this analysis. The overall pooled estimated global prevalence of MRSA colonization in the pediatric population was 5% [95% CI 4-5%]. The prevalence was the highest in Asia and lowest in Europe. Female sex, recent surgery, recent hospitalization, and antibiotic use were significantly associated with higher odds of MRSA colonization.
Collapse
Affiliation(s)
- Montaha Al-Iede
- School of Medicine, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan.
- Department of Pediatrics, Jordan University Hospital, Amman, Jordan.
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan.
| | - Dania M Ayyad
- School of Medicine, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
| | - Rasha A Etoom
- School of Medicine, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
| | - Rawaby H Aldameiry
- School of Medicine, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
| | - Ahmad A Toubasi
- School of Medicine, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
| |
Collapse
|
4
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Cai H, Li X, Zhang C, Zhong H, Xie Y, Huang L, Zhang B, Long Y, Zhou Z, Liang B. Molecular characterisation of Staphylococcus aureus in school-age children in Guangzhou: associations among agr types, virulence genes, sequence types, and antibiotic resistant phenotypes. BMC Microbiol 2023; 23:368. [PMID: 38017399 PMCID: PMC10685675 DOI: 10.1186/s12866-023-03126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus, one of the most prevalent opportunistic pathogens, mainly colonizes the nasal cavity and is a risk factor for severe infections. Virulence factors and accessory gene regulator (agr) are key to the severity and diversity of staphylococcal infection. In this study, we aimed to characterise S. aureus agr-types and virulence genes and correlated them with genetic background and antibiotic-resistant phenotypes. RESULTS Agr types were identified in 704 isolates (98.5%), with only 11 isolates were negative for agr type. Most of our isolates were classified as agr type I, followed by types III, II and IV. The enterotoxin c gene (sec) was detected in 48.6% of isolates, showing the highest prevalence among the five enterotoxin genes detected. The positivity rates for the lukS/F-PV and tsst genes were 4% and 2.2%, respectively, while neither sed nor SasX were detected. ST45, ST59, ST338, ST188, ST6, ST7, ST22, ST25, ST398, and ST944 belonged to agr I group, while ST5 and ST15 belonged to agr II group. ST30 and ST1 were classified into agr III group, and ST121 was assigned into agr IV group. The tsst gene was found exclusively within agr I and III types belonging to ST7 and ST30 isolates, while the lukS/F-PV was predominantly carried by agr I type isolates primarily within CC59 and CC22 clones. Among the methicillin-resistant S. aureus (MRSA) isolates, 89.7% belonged to agr I group, and 97.8% of rifampicin-resistant or intermediate isolates were assigned to agr I group. MRSA isolates harboured more tested virulence genes compared to methicillin-susceptible S. aureus isolates. CONCLUSIONS We characterized the distributions of agr types and eight major virulence genes of 715 S. aureus isolates, and our findings revealed clear associations between agr types and STs, as well as virulence genes, and drug resistant phenotypes.
Collapse
Affiliation(s)
- Hao Cai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xueying Li
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chao Zhang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, People's Republic of China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lianfen Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baidu Zhang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yan Long
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenwen Zhou
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China.
| | - Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Fayolle M, Epercieux A, Haddar CH, Pillet S, Berthelot P, Pozzetto B, Carricajo A, Grattard F, Verhoeven PO. Prospective Evaluation of the BD MAX StaphSR Assay for the Screening of Methicillin-Susceptible and -Resistant Staphylococcus aureus from Nasal Swabs Taken in Intensive Care Unit Patients. Int J Mol Sci 2023; 24:13881. [PMID: 37762183 PMCID: PMC10531305 DOI: 10.3390/ijms241813881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Screening patients for S. aureus nasal carriage has proved effective in preventing cross-contamination and endogenous infection with this bacterium. The aim of this study was to assess the performance of the BD MAX StaphSR assay with liquid Amies elution swabs, taken during routine care of intensive care unit patients. Direct and pre-enriched cultures were used as reference methods to screen for S. aureus and methicillin-resistant S. aureus (MRSA). Discrepant results between the BD MAX StaphSR assay and cultures were resolved by using the Xpert SA Nasal Complete assay. A total of 607 nasal swabs taken from 409 patients were included in this study. Compared to culture methods, the sensitivity and specificity of the BD MAX StaphSR assay were 92.5% and 91.7% for S. aureus screening, and 94.7% and 98.3% for MRSA screening, respectively. In 52 (8.6%) specimens, there was a discrepancy between the results of cultures and the BD MAX StaphSR assay, including 13 (25%) where the results of the BD MAX StaphSR assay were confirmed by the Xpert SA Nasal Complete test. This prospective study showed that the BD MAX StaphSR assay is reliable for S. aureus and MRSA detection from nasal samples taken with liquid Amies elution swabs.
Collapse
Affiliation(s)
- Martin Fayolle
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Amélie Epercieux
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
| | - Cyrille H. Haddar
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
| | - Sylvie Pillet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Philippe Berthelot
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Infection Control Unit, Department of Infectious Diseases, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Bruno Pozzetto
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Anne Carricajo
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Florence Grattard
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| | - Paul O. Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, 69007 Lyon, France
- Faculty of Medicine, Jean Monnet St-Etienne University, 42023 St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, 42055 St-Etienne, France
| |
Collapse
|