1
|
Maegawa H, Kohashi M, Harada Y, Tanaka A, Kajiwara S, Fujimoto T, Atagi H, Kaneda K. Antitumor immunostimulatory effect via cell-killing action of a novel extracorporeal blood circulating photodynamic therapy system using 5-aminolevulinic acid. Sci Rep 2025; 15:1064. [PMID: 39775122 PMCID: PMC11707032 DOI: 10.1038/s41598-024-84861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model. CD8+ T cell infiltration into the tumor and expression of calreticulin were examined. The cell-killing effect in the circulating PDT system and protoporphyrin IX (PpIX) accumulation were evaluated. An antitumor effect was observed only with preadministration of low-irradiated 5-ALA/PDT-treated cells and was characterized by the infiltration of CD8+ T cells into the tumor. In low-irradiated cells, several types of cell death were observed, and cell surface calreticulin expression increased over time. A method for the intravenous administration of 5-ALA/PDT-treated cells along with extracorporeal blood circulation was then developed to target hematologic malignancies. Gradually cell death in the circulating PDT system and tumor-specific PpIX accumulation was confirmed using hematopoietic tumor cells. Thus, the extracorporeal blood circulating 5-ALA/PDT system has a direct cell-killing effect and an antitumor effect via induced immune activity and illustrates a new therapeutic strategy for hematologic malignancies.
Collapse
Affiliation(s)
| | - Masayuki Kohashi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan.
- Department of Medical Innovations for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Yasuo Harada
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Akira Tanaka
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Shimpei Kajiwara
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Takashi Fujimoto
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Hidehiro Atagi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Kenta Kaneda
- Research Division, JIMRO Co., Ltd., Takasaki, Japan
| |
Collapse
|
2
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
3
|
Liu WT, Wang HT, Yeh YH, Wong TW. An Update on Recent Advances of Photodynamic Therapy for Primary Cutaneous Lymphomas. Pharmaceutics 2023; 15:pharmaceutics15051328. [PMID: 37242570 DOI: 10.3390/pharmaceutics15051328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Primary cutaneous lymphomas are rare non-Hodgkin lymphomas consisting of heterogeneous disease entities. Photodynamic therapy (PDT) utilizing photosensitizers irradiated with a specific wavelength of light in the presence of oxygen exerts promising anti-tumor effects on non-melanoma skin cancer, yet its application in primary cutaneous lymphomas remains less recognized. Despite many in vitro data showing PDT could effectively kill lymphoma cells, clinical evidence of PDT against primary cutaneous lymphomas is limited. Recently, a phase 3 "FLASH" randomized clinical trial demonstrated the efficacy of topical hypericin PDT for early-stage cutaneous T-cell lymphoma. An update on recent advances of photodynamic therapy in primary cutaneous lymphomas is provided.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Han-Tang Wang
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Hsuan Yeh
- School of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies. Cancers (Basel) 2020; 12:cancers12020335. [PMID: 32024297 PMCID: PMC7072618 DOI: 10.3390/cancers12020335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death.
Collapse
|
5
|
Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:169-177. [DOI: 10.1016/j.jphotobiol.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
6
|
de Freitas MTM, Soares TT, Aragão MGB, Lima RA, Duarte S, Zanin ICJ. Effect of Photodynamic Antimicrobial Chemotherapy on Mono- and Multi-Species Cariogenic Biofilms: A Literature Review. Photomed Laser Surg 2017; 35:239-245. [PMID: 28121497 DOI: 10.1089/pho.2016.4108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this literature review is to study the effect of photodynamic antimicrobial chemotherapy (PACT) on mono- and multi-species cariogenic biofilms. METHODS To this purpose, the database, PubMed, was searched using the descriptors, photodynamic therapy, antimicrobial photodynamic chemotherapy, and photoinactivation, associated with the mandatory presence of the word biofilm. A total of 98 references published from 2003 to 2016 were selected. Moreover, literature reviews (15), investigations that did not have biofilms related to dental caries (65), and those that did not have Streptococcus mutans count as an outcome (7) were excluded, yielding a final amount of 11 publications. RESULTS The results revealed that Toluidine Blue O was the most used photosensitizer. Among the sources of light, light-emitting diode was the choice, and the biofilm models varied between in vitro and in situ. Multi-species biofilms were more resistant to the antimicrobial effects of PACT due to the thickness and complexity they have, which impede the penetration of the photosensitizer. This fact may also be associated with the type of photosensitizer used as well as with the light exposure time since the antimicrobial effect seems to be dose dependent. Despite this, in all the included publications, the therapy was effective in reducing S. mutans count. CONCLUSIONS This review demonstrated that under different conditions, PACT is effective in reducing S. mutans count in monospecies biofilms. Multi-species biofilms were more resistant to the antimicrobial action of the therapy, possibly due to their thickness and complexity.
Collapse
Affiliation(s)
| | - Talyta Teixeira Soares
- 1 Department of Microbiology, College of Dentistry, Federal University of Ceara , Sobral, Ceara, Brazil
| | - Maria Gerusa Brito Aragão
- 1 Department of Microbiology, College of Dentistry, Federal University of Ceara , Sobral, Ceara, Brazil
| | - Ramille Araújo Lima
- 2 Department of Dental Clinics, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara , Fortaleza, Ceara, Brazil
| | - Simone Duarte
- 3 Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University , New York, New York
| | | |
Collapse
|
7
|
Feuser PE, Gaspar PC, Jacques AV, Tedesco AC, Santos Silva MCD, Ricci-Júnior E, Sayer C, de Araújo PHH. Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:458-466. [DOI: 10.1016/j.msec.2015.11.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
8
|
Evaluation of the effects of systemic photodynamic therapy in a rat model of acute myeloid leukemia. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:13-9. [PMID: 26386623 DOI: 10.1016/j.jphotobiol.2015.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Systemic PDT (SPDT) approach is developed to treat a variety of hematological diseases, including cancers and blood-borne infections. We evaluated the efficacy of an SPDT method for treating leukemia using a Brown Norway myeloid leukemia (BNML) rat model with the LT12 cells engineered to express GFP. The survival times of animals receiving SPDT at 5 (early-SPDT) and 10 (mid-SPDT) days post-LT12 injection were prolonged by 2 days, the rats in the late-SPDT group (15 days) exhibited a 6-day increase in life span (p<0.05). The percentages of GFP-LT12 cells in the bone marrow of the late-SPDT rats decreased from 61.6% to 56.5% on day 17. Likewise, there was a decrease in the serum expression levels of IL-1β, IL-10, TNF-α, and IFN-γ in the late-SPDT rats (p<0.05). Our findings indicate that SPDT could be an effective method for the treatment of leukemia, and that antitumor immunity may play a key role in this process.
Collapse
|
9
|
Neuroprotective Effect of N-Acyl 5-Hydroxytryptamines on Glutamate-Induced Cytotoxicity in HT-22 Cells. Neurochem Res 2014; 39:2440-51. [DOI: 10.1007/s11064-014-1448-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/20/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023]
|
10
|
Ye Y, Li Y, Fang F. Opening of brain blood barrier induced by red light and central analgesic improvement of cobra neurotoxin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:16-22. [PMID: 24792470 DOI: 10.1016/j.jphotobiol.2014.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/18/2023]
Abstract
Cobra neurotoxin (NT) has central analgesic effects, but it is difficult to pass through brain blood barrier (BBB). A novel method of red light induction is designed to help NT across BBB, which is based on photosensitizer activation by red light to generate reactive oxygen species (ROS) to open BBB. The effects were evaluated on cell models and animals in vivo with illumination by semiconductor laser at 670nm on photosensitizer pheophorbide isolated from silkworm excrement. Brain microvascular endothelial cells and astrocytes were co-cultured to build up BBB cell model. The radioactivity of (125)I-NT was measured in cells and tissues for NT permeation. Three ways of cranial irradiation, nasal cavity and intravascular irradiation were tested with combined injection of (125)I-NT 20μg/kg and pheophorbide 100μg/kg to rats, and organs of rats were separated and determined the radioactivity. Paw pressure test in rats, hot plate and writhing test in mice were applied to appraise the analgesic effects. NT across BBB cell model increased with time of illumination, and reached stable level after 60min. So did ROS in cells. NT mainly distributed in liver and kidney of rats, significantly increased in brain after illumination, and improved analgesic effects. Excitation of pheophorbide at red light produces ROS to open BBB, help NT enter brain, and enhance its central action. This research provides a new method for drug across BBB to improve its central role.
Collapse
Affiliation(s)
- Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Yue Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Fei Fang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
11
|
Silva JC, Ferreira-Strixino J, Fontana LC, Paula LM, Raniero L, Martin AA, Canevari RA. Apoptosis-associated genes related to photodynamic therapy in breast carcinomas. Lasers Med Sci 2014; 29:1429-36. [DOI: 10.1007/s10103-014-1547-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/05/2014] [Indexed: 11/29/2022]
|
12
|
Jin MC, Liu XW, Kim MR, Sok DE. Immunosuppressive and anti-inflammatory effects of N-acyl dopamines on Con A-stimulated splenocytes of BALB/c mouse. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mei Chen Jin
- College of Pharmacy; Chungnam National University; Daejeon Republic of Korea
| | - Xi-Wen Liu
- Center of Laboratory; Yanbian University Hospital; Yanji Jilin Provinc. China
| | - Mee Ree Kim
- Department of Food and Nutrition; Chungnam National University; Daejeon Republic of Korea
| | - Dai-Eun Sok
- College of Pharmacy; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
13
|
Quishida CCC, Carmello JC, Mima EGDO, Bagnato VS, Machado AL, Pavarina AC. Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine®. Lasers Med Sci 2013; 30:685-94. [DOI: 10.1007/s10103-013-1397-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
14
|
Kim K, Kim SH, Cho IS, Kim HY, Kim DS, Lee YC. Studies on the regulation of Hematopoietic enhancement of Brassica campestris var narinosa., Canavalia gladiata DC semen and their combinational prescription via Jak2/STAT5/GATA1 Pathway in Sca-1+hematopoietic stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.6116/kjh.2013.28.4.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Fontana CR, Lerman MA, Patel N, Grecco C, de Souza Costa CA, Amiji MM, Bagnato VS, Soukos NS. Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci 2012; 28:479-86. [DOI: 10.1007/s10103-012-1091-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|