1
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
2
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
4
|
Du F, Wang Q, Ouyang L, Wu H, Yang Z, Fu X, Liu X, Yan L, Cao Y, Xiao R. Comparison of concentrated fresh mononuclear cells and cultured mesenchymal stem cells from bone marrow for bone regeneration. Stem Cells Transl Med 2020; 10:598-609. [PMID: 33341102 PMCID: PMC7980203 DOI: 10.1002/sctm.20-0234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/20/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Autologous bone marrow mononuclear cell (BMMNC) transplantation has been widely studied in recent years. The fresh cell cocktail in BMMNCs, without going through the in vitro culture process, helps to establish a stable microenvironment for osteogenesis, and each cell type may play a unique role in bone regeneration. Our study compared the efficacy of concentrated fresh BMMNCs and cultured bone marrow‐derived mesenchymal stem cells (BMSCs) in Beagle dogs for the first time. Fifteen‐millimeter segmental bone defects were created in the animals' tibia bones. In BMMNCs group, the defects were repaired with concentrated fresh BMMNCs combined with β‐TCP (n = 5); in cultured BMSC group, with in vitro cultured and osteo‐induced BMSCs combined with β‐TCP (n = 5); in scaffold‐only group, with a β‐TCP graft alone (n = 5); and in blank group, nothing was grafted (n = 3). The healing process was monitored by X‐rays and single photon emission computed tomography. The animals were sacrificed 12 months after surgery and their tibias were harvested and analyzed by microcomputed tomography and hard tissue histology. Moreover, the microstructure, chemical components, and microbiomechanical properties of the regenerated bone tissue were explored by multiphoton microscopy, Raman spectroscopy and nanoindentation. The results showed that BMMNCs group promoted much more bone regeneration than cultured BMSC group. The grafts in BMMNCs group were better mineralized, and they had collagen arrangement and microbiomechanical properties similar to the contralateral native tibia bone. These results indicate that concentrated fresh bone marrow mononuclear cells may be superior to in vitro expanded stem cells in segmental bone defect repair.
Collapse
Affiliation(s)
- Fengzhou Du
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Long Ouyang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Huanhuan Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
5
|
Lee YR, Findlay DM, Muratovic D, Gill TK, Kuliwaba JS. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients. Bone Rep 2020; 12:100269. [PMID: 32395569 PMCID: PMC7210419 DOI: 10.1016/j.bonr.2020.100269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Bone marrow lesions (BMLs) are frequently identified by MRI in the subchondral bone in knee osteoarthritis (KOA). BMLs are known to be closely associated with joint pain, loss of the cartilage and structural changes in the subchondral trabecular bone (SCTB). Despite this, understanding of the nature of BMLs at the trabecular tissue level is incomplete. Thus, we used Raman microspectroscopy to examine the biochemical properties of SCTB from KOA patients with presence or absence of BMLs (OA-BML, OA No-BML; respectively), in comparison with age-matched cadaveric non-symptomatic controls (Non-OA CTL). METHODS Tibial plateau (TP) specimens were collected from 19 KOA arthroplasty patients (6-Male, 13-Female; aged 56-74 years). BMLs were identified ex-vivo by MRI, using PDFS- and T1-weighted sequences. The KOA specimens were then categorized into an OA-BML group (n = 12; containing a BML within the medial condyle only) and an OA No-BML group (n = 7; with no BMLs identified in the TP). The control (CTL) group consisted of Non-OA cadaveric TP samples with no BMLs and no macroscopic or microscopic evidence of OA-related changes (n = 8; 5-Male, 3-Female; aged 44-80 years). Confocal Raman microspectroscopy, with high spatial resolution, was used to quantify the biochemical properties of SCTB tissue of both the medial and the lateral condyle in each group. RESULTS The ratios of peak intensity and integrated area of bone matrix mineral (Phosphate (v1), Phosphate (v2) and Phosphate (v4)), to surrogates of the organic phase of bone matrix (Amide I, Proline and Amide III), were calculated. Within the medial compartment, the mineral:organic matrix ratios were significantly lower for OA-BML, compared to Non-OA CTL. These ratios were also significantly lower for the OA-BML medial compartment, compared to the OA-BML lateral compartment. There were no group or compartmental differences for Carbonate:Phosphate (v1, v2 and v4), Amide III (α-helix):Amide III (random-coil), Hydroxyproline:Proline, or Crystallinity. CONCLUSION As measured by Raman microspectroscopy, SCTB tissue in BML zones in KOA is significantly less mineralized than the corresponding zones in individuals without OA. These data are consistent with those obtained using other methods (e.g. Fourier transform infrared spectroscopy; FTIR) and with the increased rate of bone remodeling observed in BML zones. Reduced mineralization may change the biomechanical properties of the trabecular bone in BMLs and the mechanical interaction between subchondral bone and its overlying cartilage, with potential implications for the development and progression of OA.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - David M. Findlay
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Dzenita Muratovic
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Tiffany K. Gill
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Julia S. Kuliwaba
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Taylor EA, Donnelly E, Yao X, Johnson ML, Amugongo SK, Kimmel DB, Lane NE. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int 2020; 106:303-314. [PMID: 31784772 DOI: 10.1007/s00223-019-00634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah K Amugongo
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA.
- Health Center, University of California At Davis, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J Clin Med 2019; 8:E488. [PMID: 30978926 PMCID: PMC6518405 DOI: 10.3390/jcm8040488] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, defined as the age-related decrease in muscle mass, strength and physical performance, is associated with reduced bone mass and elevated low-grade inflammation. From a healthy aging perspective, interventions which overcome sarcopenia are clinically relevant. Accumulating evidence suggests that exogenous creatine supplementation has the potential to increase aging muscle mass, muscle performance, and decrease the risk of falls and possibly attenuate inflammation and loss of bone mineral. Therefore, the purpose of this review is to: (1) summarize the effects of creatine supplementation, with and without resistance training, in aging adults and discuss possible mechanisms of action, (2) examine the effects of creatine on bone biology and risk of falls, (3) evaluate the potential anti-inflammatory effects of creatine and (4) determine the safety of creatine supplementation in aging adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB R7A 6A9, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33314, USA.
| | - Richard B Kreider
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
8
|
|
9
|
Zhang D, Hu M, Chu T, Lin L, Wang J, Li X, Ke HZ, Qin YX. Sclerostin antibody prevented progressive bone loss in combined ovariectomized and concurrent functional disuse. Bone 2016; 87:161-8. [PMID: 26868528 PMCID: PMC4862887 DOI: 10.1016/j.bone.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25mg/kg were made twice per week for 5weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS+OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading.
Collapse
Affiliation(s)
- Dongye Zhang
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Minyi Hu
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Timothy Chu
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Liangjun Lin
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Jingyu Wang
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Xiaodong Li
- Dept. of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA, United States
| | | | - Yi-Xian Qin
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States.
| |
Collapse
|
10
|
Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women. Med Sci Sports Exerc 2016; 47:1587-95. [PMID: 25386713 DOI: 10.1249/mss.0000000000000571] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Our primary purpose was to determine the effect of 12 months of creatine (Cr) supplementation during a supervised resistance training program on properties of bone in postmenopausal women. METHODS Participants were randomized (double-blind) into two groups: resistance training (3 d·wk) and Cr supplementation (0.1 g·kg·d) or resistance training and placebo (Pl). Our primary outcome measures were lumbar spine and femoral neck bone mineral density (BMD). Secondary outcome measures were total hip and whole-body BMD, bone geometric properties at the hip, speed of sound at the distal radius and tibia, whole-body lean tissue mass, muscle thickness, and bench press and hack squat strength. Forty-seven women (57 (SD, 6) yr; Cr, n = 23; Pl, n = 24) were randomized, with 33 analyzed after 12 months (Cr, n = 15; Pl, n = 18). RESULTS Cr attenuated the rate of femoral neck BMD loss (-1.2%; absolute change (95% confidence interval), -0.01 (-0.025 to 0.005) g·cm) compared with Pl (-3.9%; -0.03 (-0.044 to -0.017) g·cm; P < 0.05) and also increased femoral shaft subperiosteal width, a predictor of bone bending strength (Cr, 0.04 (-0.09 to 0.16) cm); Pl, -0.12 (-0.23 to -0.01) cm; P < 0.05). Cr increased relative bench press strength more than Pl (64% vs 34%; P < 0.05). There were no differences between groups for other outcome measures. There were no differences between groups for reports of serum liver enzyme abnormalities, and creatinine clearance was normal for Cr participants throughout the intervention. CONCLUSIONS Twelve months of Cr supplementation during a resistance training program preserves femoral neck BMD and increases femoral shaft superiosteal width, a predictor of bone bending strength, in postmenopausal women.
Collapse
Affiliation(s)
- Philip D Chilibeck
- 1College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA; 2Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, CANADA; and 3College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA
| | | | | | | | | |
Collapse
|
11
|
Murai IH, Roschel H, Pabis LVS, Takayama L, de Oliveira RB, Dos Santos Pereira RT, Dantas WS, Pereira RMR, Jorgetti V, Ballester RY, Gualano B. Exercise training, creatine supplementation, and bone health in ovariectomized rats. Osteoporos Int 2015; 26:1395-404. [PMID: 25586761 DOI: 10.1007/s00198-014-3017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Evidence suggests that creatine may have some beneficial effects on bone. The study aimed to investigate the effects of exercise alone or combined with creatine on bone health in ovariectomized rats. Findings show that exercise, but not creatine, has an important role in improving bone health. INTRODUCTION The aim of this study was to investigate the effects of exercise training alone or combined with creatine supplementation on bone health parameters in ovariectomized rats. METHODS Wistar rats were randomly allocated into one of five groups: (i) sham-operated, (ii) ovariectomized non-trained placebo-supplemented, (iii) ovariectomized non-trained creatine-supplemented, (iv) ovariectomized exercise-trained placebo-supplemented, and (v) ovariectomized exercise-trained creatine-supplemented. Downhill running training and/or creatine supplementation (300 mg/kg body weight) were administered for 12 weeks. Bone mineral content (BMC), bone mineral density (BMD), and biomechanical and histomorphometric parameters were assessed. RESULTS No interaction effects were observed for BMC and BMD at whole body, femur, and lumbar spine (p > 0.05). Importantly, a main effect of training was detected for whole body BMC and BMD (p = 0.003 and p < 0.001, respectively), femoral BMC and BMD (p = 0.005 and p < 0.001, respectively), and lumbar spine BMC and BMD (p < 0.001 and p < 0.001, respectively), suggesting that the trained animals had higher bone mass, irrespective of creatine supplementation. Main effects of training were also observed for maximal load (p < 0.001), stiffness (p < 0.001), and toughness (p = 0.046), indicating beneficial effects of exercise training on bone strength. Neither a main effect of supplementation nor an interaction effect was detected for biomechanical parameters (p > 0.05). No main or interaction effects were observed for any of the histomorphometric parameters evaluated (p > 0.05). CONCLUSIONS Exercise training, but not creatine supplementation, attenuated ovariectomy-induced bone loss in this rat model.
Collapse
Affiliation(s)
- I H Murai
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen SY, Yu HT, Kao JP, Yang CC, Chiang SS, Mishchuk DO, Mau JL, Slupsky CM. Consumption of vitamin D2 enhanced mushrooms is associated with improved bone health. J Nutr Biochem 2015; 26:696-703. [PMID: 25792284 DOI: 10.1016/j.jnutbio.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
Mushrooms are the best nonanimal food source of vitamin D2. Pulsed irradiation can enhance vitamin D2 in mushrooms quickly. We investigated the effect of supplementing high vitamin D2Pleurotus ferulae mushrooms in a mouse model of osteoporosis. Thirty-two female C57BL/6JNarl mice were divided into four groups including sham, ovariectomized (OVX), OVX+nonpulsed mushroom (NPM) and OVX+pulsed mushroom (PM). After 23 weeks of treatment, serum samples were analyzed for osteoblast and osteoclast indicators, as well as metabolites using NMR spectroscopy. To examine bone density, femurs were analyzed using micro-computed tomography. The NPM and PM treatment mice showed increased bone density in comparison with OVX mice. In addition, the PM mice showed higher osteoblast and lower osteoclast indicators in comparison with OVX mice. Serum metabolomics analysis indicated several metabolites that were different in PM mice, some of which could be correlated with bone health. Taken together, these results suggest that pulsed irradiated mushrooms are able to increase bone density in osteoporotic mice possibly through enhanced bone metabolism. Further studies in humans are needed to show their efficacy in preventing osteoporosis.
Collapse
Affiliation(s)
- Shin-Yu Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.; NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.; Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Hui-Tzu Yu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Ju-Po Kao
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chung-Chun Yang
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Shen-Shih Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.; NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Darya O Mishchuk
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Jeng-Leun Mau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.; NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, R.O.C..
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Mangueira NM, Xavier M, de Souza RA, Salgado MAC, Silveira L, Villaverde AB. Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed Laser Surg 2015; 33:145-53. [PMID: 25714387 DOI: 10.1089/pho.2014.3744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This work aimed to investigate the biochemical changes associated with low-level laser therapy (LLLT) using 660 and 780 nm, on a well-established experimental model of osteoarthritis (OA) in the knees of rats with induced collagenase, using histomorphometry and Raman spectroscopy. MATERIALS AND METHODS Thirty-six Wistar rats were divided into four groups: control (GCON, n=9), collagenase without treatment (GCOL, n=9), collagenase with LLLT 660 nm treatment (G660, n=8), and collagenase with LLLT 780 nm treatment (G780, n=10). LLLT protocol was: 30 mW power output, 10 sec irradiation time, 0.04 cm(2) spot size, 0.3 J energy, 0.75 W/cm(2) irradiance, and 7.5 J/cm(2) fluence per session per day, during 14 days. Then, knees were withdrawn and submitted to histomorphometry and Raman spectroscopy analysis. Principal components analysis (PCA) and Mahalanobis distance were employed to characterize the spectral findings. RESULTS Histomorphometry revealed a significant increase in the amount of collagen III for the group irradiated with 660 nm. The Raman bands at 1247, 1273, and 1453 cm(-1) (from principal component score PC2), attributed to collagen type II, and 1460 cm(-1) (from PC3), attributed to collagen type III, suggested that the LLLT causes acceleration in cellular activity, especially on the cells that repair cartilage, accelerating the breakdown of cartilage destroyed by collagenase and stimulating the fibroblast to synthesize repairing collagen III. CONCLUSIONS LLLT accelerated the initial breakdown of cartilage destroyed by collagenase and stimulated the fibroblast to synthesize the repairing collagen III, suggesting a beneficial effect of LLLT on OA.
Collapse
|
14
|
Genc G, Okuyucu A, Meydan BC, Yavuz O, Nisbet O, Hokelek M, Bedir A, Ozkaya O. Effect of free creatine therapy on cisplatin-induced renal damage. Ren Fail 2014; 36:1108-13. [PMID: 24845105 DOI: 10.3109/0886022x.2014.917576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract Cisplatin is one of the commonly used anticancer drugs and nephrotoxicity limits its use. The aim of this study is to investigate the possible protective effect of creatine supplementation on cisplatin-induced nephrotoxicity. Sixty male Sprague-Dawley rats were divided into three groups: Group I: Cisplatin (n=20) (7 mg/kg cisplatin intraperitoneal (i.p.) single dose), group II: Cisplatin+creatine monohydrate (n=20) (7 mg/kg cisplatin i.p. single dose and 300 mg/kg creatine p.o. daily for 30 days starting on first day of cisplatin injection), group III: Control group (n=20) (Serum physiologic, 2.5 mL/kg i.p.). Sacrifications were performed at first week and 30th day. Blood urea nitrogen (BUN) and serum creatinine levels, histopathological evaluation, mitochondrial deoxyribonucleic acid (mtDNA) common deletion rates, and body weights of rats were evaluated. A significant decrease in body weight, higher values of kidney function tests, histopathological scores, and mtDNA deletion ratios were observed in group I compared to control group at days 7 and 30 (p<0.05). In group II, there was a slight decrease in body weight at same days (p=0.931 and 0.084, respectively). Kidney function tests, histopathological scores, and mtDNA common deletion ratios were statistically better in group II than group I at 7th and 30th day (p<0.05). Although creatine significantly reversed kidney functions and pathological findings, this improvement was not sufficient to reach normal control group's results at days 7 and 30. In conclusion, the present study demonstrates that creatine administration is a promising adjuvant protective drug for reducing nephrotoxic effect of cisplatin.
Collapse
Affiliation(s)
- Gurkan Genc
- Pediatric Nephrology Department, Medical Faculty, Ondokuz Mayıs University , Samsun , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Candow DG, Chilibeck PD, Forbes SC. Creatine supplementation and aging musculoskeletal health. Endocrine 2014; 45:354-61. [PMID: 24190049 DOI: 10.1007/s12020-013-0070-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Sarcopenia refers to the progressive loss of muscle mass and muscle function and is a contributing factor for cachexia, bone loss, and frailty. Resistance training produces several physiological adaptations which improve aging musculoskeletal health, such as increased muscle and bone mass and strength. The combination of creatine supplementation and resistance training may further lead to greater physiological benefits. We performed meta-analyses which indicate creatine supplementation combined with resistance training has a positive effect on aging muscle mass and upper body strength compared to resistance training alone. Creatine also shows promise for improving bone mineral density and indices of bone biology. The combination of creatine supplementation and resistance training could be an effective intervention to improve aging musculoskeletal health.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada,
| | | | | |
Collapse
|
16
|
Discrimination of prostate carcinoma from benign prostate tissue fragments in vitro by estimating the gross biochemical alterations through Raman spectroscopy. Lasers Med Sci 2014; 29:1469-77. [PMID: 24619139 DOI: 10.1007/s10103-014-1550-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Raman spectroscopy has been proposed for detecting biochemical alterations in prostate cancer (PrCa) compared to benign prostate tissue in in vitro fragments from surgery for diagnostic purposes. Freezer-stored fragments of human prostate tissues were unfrozen and submitted to Raman spectroscopy with a dispersive spectrometer (830-nm and 200-mW laser parameters, 30-s exposure time). Fragments were fixed and submitted to histopathology to grade PrCa according to Gleason score. A total of 160 spectra were taken from 32 samples (16 benign tissues and 16 PrCa tissues). The relative concentrations of selected biochemicals were estimated using a least-squares fitting model applied to the spectra of pure compounds and the tissue spectrum. A discrimination model was developed employing the most statistically relevant compounds with capability of separating PrCa from benign tissues. The fitting model revealed that actin, hemoglobin, elastin, phosphatidylcholine, and water are the most important biochemicals to discriminate prostate depending on the Gleason score. A discrimination based on Euclidean distance using the relative concentrations of phosphatidylcholine and water showed the higher accuracy of 74 % to discriminate PrCa from benign tissue. Raman spectroscopy is an analytical technique with possibility for identifying biochemical constitution of prostate and could be used for diagnostic purposes.
Collapse
|
17
|
de Souza RA, Xavier M, Mangueira NM, Santos AP, Pinheiro ALB, Villaverde AB, Silveira L. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 2013; 29:797-804. [PMID: 23979802 DOI: 10.1007/s10103-013-1423-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 08/11/2013] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to evaluate the feasibility of applying Raman spectroscopy in probing the molecular changes in terms of collagen deposition and tissue remodeling associated with two well-established experimental models of osteoarthritis (OA) in knee of rats. In order to evaluate alterations in the articular surface area, the menisci-covered tibial region was assessed into three groups as follows: control (joint preserved) and two models of experimental knee OA: collagenase-induced model (n = 8) and treadmill exercise-induced model (n = 8). Each group was examined for molecular changes using spectral parameters related to cartilage, subchondral bone, and bone tissues. A significant increase of Raman ratios related to mineralization and tissue remodeling was found (p < 0.05), suggesting that both models were successful for inducing OA in rats. The significantly lower phenylalanine content and higher crystallinity in the treadmill exercise-induced model of OA than collagenase-induced model of OA (p < 0.05) indicated that the OA pathogenesis was model-dependent. Thus, this work suggests that the Raman spectroscopy technique has potential for the diagnosis and detection of cartilage damage and monitoring of subchondral bone and bone in OA pathogenesis at the molecular level.
Collapse
Affiliation(s)
- Renato Aparecido de Souza
- Grupo de Estudos e Pesquisa em Ciências da Saúde (GEP-CS), Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Muzambinho. Estrada de Muzambinho, km 35, Caixa Postal 02, 37890-000, Muzambinho, Minas Gerais, Brazil,
| | | | | | | | | | | | | |
Collapse
|
18
|
Diagnosis of pathological minor salivary glands in primary Sjogren's syndrome by using Raman spectroscopy. Lasers Med Sci 2013; 29:723-8. [PMID: 23893093 DOI: 10.1007/s10103-013-1398-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/11/2013] [Indexed: 01/02/2023]
Abstract
The lip biopsy is essential for the diagnosis of primary Sjogren's syndrome (SS) but an invasive method can cause some disadvantages. The purpose of this study is to apply Raman spectroscopy to detect the pathological minor salivary glands in primary SS and establish the diagnostic model of Raman spectra of the primary SS samples. Raman spectra from the primary samples and control samples were obtained by Raman microscope and were compared to find the differences. The principal component analysis (PCA) and discrimination function analysis (DFA) were employed to analyze the spectra and establish the diagnostic model. The differences of Raman spectra demonstrated the biochemical molecular alterations between the different samples. Compared with the control samples, the content of proteins, nucleic acids, and keratin increased in the primary SS samples but the content of lipids decreased. PCA and DFA displayed a powerful role in the classification of the Raman spectra. The sensitivity and specificity of the diagnostic model reached above 91 and 92%, respectively. The total accuracy is 92.4%. Raman spectroscopy combined with PCA-DFA algorithm will provide an effective and accurate technology for the diagnosis of the pathological minor salivary glands in primary SS, which may replace the lip biopsy in the future.
Collapse
|
19
|
Gamulin O, Serec K, Bilić V, Balarin M, Kosović M, Drmić D, Brčić L, Seiwerth S, Sikirić P. Monitoring the healing process of rat bones using Raman spectroscopy. J Mol Struct 2013; 1044:308-313. [DOI: 10.1016/j.molstruc.2013.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|