1
|
He K, Zhou X, Zheng F, Ju X, Fu SN, Wong AYL. Histological, Physiological and Biomechanical Effects of Low-Level Laser Therapy on Tendon Healing in Animals and Humans: A Systematic Review. Ann Biomed Eng 2023; 51:2659-2707. [PMID: 37899380 DOI: 10.1007/s10439-023-03364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023]
Abstract
Low-level Laser Therapy (LLLT) was widely used in clinical practice for tendon disorders. However, the underlying mechanisms and effectiveness of LLLT in treating tendon injury remain unclear. Therefore, the present study was conducted aiming to summarize the evidence regarding the histological, physiological, and biomechanical effects of LLLT on tendon healing in animal and human models. Four databases were searched for relevant literature. Four independent reviewers screened abstracts and full-text articles, extracted relevant data, evaluated the risk of bias, and quantified the quality of evidence. Database searches yielded 1400 non-duplicated citations. Fifty-five studies were included (50 animal and five human studies). Animal studies revealed that LT had stimulating effects on collagen organization, collagen I and collagen II formation, matrix metalloproteinase (MMP)-8, transforming growth factor β1, vascular endothelial growth factor, hydroxyproline, maximum load, maximum elongation before breaking, and tendon stiffness. However, LLLT had inhibitory effects on the number of inflammatory cells, histological scores, relative amount of collagen III, cyclooxygenase-2, prostaglandin E2 (PGE2), interleukin-6, tumor necrosis factor-α, MMP-1, and MMP-3. Although one human study found that LLLT reduced the concentration of PGE2 in peritendinous tissue of the Achilles tendon, other human studies revealed that the effects of LLLT on the physiology and biomechanics of human tendons remained uncertain. LLLT facilitates tendon healing through various histological, physiological, and biomechanical effects in animal models. Only post-LLLT anti-inflammatory effects were found in human studies.
Collapse
Affiliation(s)
- Kexu He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Feisheng Zheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaojie Ju
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Siu-Ngor Fu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
2
|
Abstract
Low-level laser therapy (LLLT) has become an important part of the therapeutic process in various diseases. However, despite the broad use of LLLT in everyday clinical practice, the full impact of LLLT on cell life processes has not been fully understood. This paper presents the current state of knowledge concerning the mechanisms of action of LLLT on cells. A better understanding of the molecular processes occurring within the cell after laser irradiation may result in introducing numerous novel clinical applications of LLLT and potentially increases the safety profile of this therapy.
Collapse
|
3
|
Denzinger M, Schenk KBM, Krauß S, Held M, Daigeler A, Wolfertstetter PR, Knorr C, Illg C, Eisler W. Immune-modulating properties of blue light do not influence reepithelization in vitro. Lasers Med Sci 2022; 37:2431-2437. [PMID: 35048232 DOI: 10.1007/s10103-022-03502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Phototherapy is gaining more attention in the treatment of various diseases. Especially, blue light seems to be a promising approach for wound healing promotion due to its antimicrobial and immune-modulating properties. Despite this, there is only little research focusing on the immune-modulating properties of blue light and its possible effects on wound healing. Therefore, we investigated the effects of blue light irradiation on peripheral blood mononuclear cells (PBMC) and the influence on reepithelization in vitro. PBMCs were irradiated with DermoDyne® (DermoDyne HealthCare, Berlin, Germany) and effects on cell viability, cytokine expression, and scratch wound closure were evaluated afterwards. Irradiated cells showed a higher Interleukin-γ concentration while irradiation reduced resazurin concentration in a time-dependent manner. No differences in reepithelization were detectable when keratinocytes were treated with the supernatant of these blue light irradiated PBMCs. Blue light-mediated ex vivo stimulation of PBMCs does not cause faster reepithelization in an in vitro setting. Further research is needed to investigate the wound healing effects of phototherapy with blue light.
Collapse
Affiliation(s)
- Markus Denzinger
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany.
| | - Katharina B M Schenk
- Department of Medicine, St. John of God Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krauß
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Manuel Held
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Adrien Daigeler
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Patricia Reis Wolfertstetter
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany
| | - Christian Knorr
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany
| | - Claudius Illg
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Wiebke Eisler
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Lopes Silva RSD, Pessoa DR, Mariano RR, Castro ABS, de Oliveira RA, Ferraresi C. Systematic Review of Photobiomodulation Therapy (PBMT) on the Experimental Calcaneal Tendon Injury in Rats. Photochem Photobiol 2020; 96:981-997. [PMID: 32191817 DOI: 10.1111/php.13262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
This systematic review analyzed the light parameters and the effects of photobiomodulation therapy (PBMT) through low-level laser therapy (LLLT) and/or LED (light-emitting diode) on tendon repair of rats submitted to calcaneal injury. This study was conducted in accordance with the guidelines of the Preferred Reporting Items for Meta-Analysis, and PubMed and MEDLINE databases were accessed to search eligible studies published in English. The search terms were as follows: "Achilles tendon" or "Calcaneal tendon" or "tendon injuries" or "soft tissue injuries" and "tendinopathy" or "tendinitis" and "low-level light therapy" or "low-level laser therapy" or "low intensity power therapy" or "light-emitting diode" or photobiomodulation." The SYRCLE (SYstematic Review Center for Laboratory animal Experimentation) risks of bias was used to assess the risk of bias for selected studies. A total of 225 studies were found based on the descriptors used, and only 33 studies were eligible. Light parameters identified per point of irradiation were approximately 60 mW (continuous mode at infrared spectra), 2 W cm-2 , 2 J and 45 J cm-2 . Light parameters at red spectra, continuous versus pulsed mode, and PBMT combined or compared with other therapies such as ultrasound, and studies using unhealthy rats (ovariectomized and/or diabetic models) were also identified and grouped according to these similarities. The main effects found were decreased inflammatory markers and signs of inflammatory process. PBMT (laser/LED) has positive effects in reducing the inflammatory and time for tissue repair in animal models of tendon injury and/or tendinitis using parameters identified.
Collapse
Affiliation(s)
- Rauena Souto Diogo Lopes Silva
- Health Sciences Center, Universidade Estadual do Piaui, Teresina, Brazil.,Post-graduation program in Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| | | | | | | | | | - Cleber Ferraresi
- Post-graduation program in Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| |
Collapse
|
5
|
de Oliveira AR, da Silva FS, Bortolin RH, Marques DEDS, Ramos GV, Marqueti RC, da Silva NB, Medeiros KCDP, Corrêa MA, Lima JPMS, de Rezende AA, Ackermann PW, Abreu BJ, de Brito Vieira WH. Effect of photobiomodulation and exercise on early remodeling of the Achilles tendon in streptozotocin-induced diabetic rats. PLoS One 2019; 14:e0211643. [PMID: 30716140 PMCID: PMC6361457 DOI: 10.1371/journal.pone.0211643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to compare the treatment effects of laser photobiomodulation (LPBM) therapy and aerobic exercise on the biomechanical properties, tissue morphology and the expression of tendon matrix molecules during early remodeling of Achilles tendon (AT) injury in diabetic rats. Animals were randomly assigned to five groups: injured non diabetic (I, n = 15), injured diabetic (ID, n = 15), injured diabetic plus LPBM (IDL, n = 16), injured diabetic plus aerobic exercise (IDE, n = 16) and injured diabetic plus aerobic exercise and LPBM (IDEAL, n = 17). Type 1 diabetes was induced via a single intravenous injection of Streptozotocin at a dose of 40 mg/kg. A partial tenotomy was performed in the right AT. LPBM was performed with an indium-gallium-aluminum-phosphide 660 nm 10 mW laser device (spot size 0.04 cm2, power density 250 mW/cm2, irradiation duration 16 s, energy 0.16 J, energy density 4 J/cm2) on alternate days for a total of 9 sessions over 3 weeks (total energy 1.44 J), using a stationary contact technique to a single point over the dorsal aspect of the AT. Moderate aerobic exercise was performed on a motorized treadmill (velocity 9 m/min for 60 minutes). At 3 weeks post-injury, biomechanical analyzes as well as assessment of fibroblast number and orientation were performed. Collagen 1 (Col1) and 3 (Col3) and matrix metalloproteinases (MMPs) -3 and 13 protein distributions were studied by immunohistochemistry; while Col1 and Col3 and MMP-2 and 9 gene expression were assessed by quantitative RT-PCR (qRT-PCR). IDEAL exhibited significant increases in several biomechanical parameters in comparison to the other groups. Moreover, IDEAL presented stronger Col1 immunoreactivity when compared to ID, and weaker Col3 immunoreactivity than IDE. Both IDL and IDEAL demonstrated weaker expression of MMP-3 in comparison to I, while IDL presented no expression of MMP-13 when compared to ID. ID, IDL and IDE showed an increased number of fibroblasts in comparison to I, while IDEAL decreased the number of these cells in comparison to ID and IDE. IDL and IDEAL groups exhibited decreased angular dispersion among the fibroblasts when compared to I. The gene expression results showed that IDE demonstrated a downregulation in Col1 mRNA expression in comparison to I and ID. IDEAL demonstrated upregulation of Col1 mRNA expression when compared to IDL or IDE alone and increased MMP-2 expression when compared to IDL and IDE. MMP-9 expression was upregulated in IDEAL when compared to I, IDL and IDE. Our results suggest a beneficial interaction of combining both treatment strategies i.e., aerobic exercise and LPBM, on the biomechanical properties, tissue morphology and the expression of matrix molecules in diabetic tendons.
Collapse
MESH Headings
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Collagen Type I/metabolism
- Collagen Type III/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Fibroblasts/metabolism
- Low-Level Light Therapy/methods
- Male
- Metalloendopeptidases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin/pharmacology
- Tendon Injuries/etiology
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Tendon Injuries/therapy
- Up-Regulation/physiology
- Wound Healing/physiology
Collapse
Affiliation(s)
| | - Flávio Santos da Silva
- Department of Health Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bento J. Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
6
|
Poorpezeshk N, Ghoreishi SK, Bayat M, Pouriran R, Yavari M. Early Low-Level Laser Therapy Improves the Passive Range of Motion and Decreases Pain in Patients with Flexor Tendon Injury. Photomed Laser Surg 2018; 36:530-535. [DOI: 10.1089/pho.2018.4458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Naghmeh Poorpezeshk
- Department of Plastic Surgery, Research, and Developmental Center, 15 Khordad Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Surgery, Naft Central Hospital, Petroleum Industry Health Organization, Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Yavari
- Department of Plastic Surgery, Research, and Developmental Center, 15 Khordad Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Takase F, Kataoka T, Kokubu T, Kuroda R. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018; 7:362-372. [PMID: 29922457 PMCID: PMC5987694 DOI: 10.1302/2046-3758.75.bjr-2017-0126.r2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2
Collapse
Affiliation(s)
- Y Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - A Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - F Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Souza MVD, Silva MOD. LASERTERAPIA EM AFECÇÕES LOCOMOTORAS: REVISÃO SISTEMÁTICA DE ESTUDOS EXPERIMENTAIS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162201144326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Introdução: Ao longo dos anos a fisioterapia tem contribuído para o tratamento das lesões musculotendíneas e osteoarticulares pela utilização de diversos recursos eletrotermofototerapêuticos como, por exemplo, o laser de baixa potência. Objetivo: A finalidade desse estudo foi identificar mediante revisão sistemática, o efeito da laserterapia de baixa potência em afecções do sistema locomotor de ratos, com destaque para a dose de energia e o comprimento de onda utilizado, assim como para a resposta ao tratamento. Métodos: Foram consultadas as bases de dados Medline, Lilacs, PEDro e SciELO, entre janeiro de 2005 a maio de 2013, utilizando os termos "tendinopathy", "laser therapy", "rats", "tendon", "muscle", "bone", "low-level laser therapy", assim como "tendinopatia", "laserterapia", "ratos", "tendão", "músculo", "osso" e "laser de baixa potência". Apenas foram incluídos estudos experimentais publicados nos idiomas português e inglês, que induziram lesão em tendões, músculos, ossos e/ou articulação, tratada com laserterapia, associada ou não a outros tratamentos. Resultados: Foi encontrado um total de 30 estudos experimentais nas bases de dados consultadas, dos quais 15 (50%) foram realizados em tendão, 10 (33,33%) em músculo e cinco (16,66%) em osso e/ou articulação. As doses de energia mais comumente utilizadas foram de 3 J (26,66%) e 1 J (16,66%). Já os comprimentos de onda foram de 904 nm (21,21%) e 830 nm (21,21%). Conclusão: A informação mais expressiva obtida com a terapia foi a diminuição da resposta inflamatória (36,66%) em lesões ortopédicas agudas.
Collapse
|
9
|
Souza MVD, Silva CHO, Silva MOD, Costa MBMD, Dornas RF, Borges APB, Natali AJ. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise. REV BRAS MED ESPORTE 2015. [DOI: 10.1590/1517-869220152105144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated. Objective: To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking) on Achilles tendinopathy of Wistar rats. Method: Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric exercise, rest, contralateral tendon, and healthy tendon). Unilateral tendinopathy was surgically induced by transversal compression followed by scarification of tendon fibers. The treatments laser therapy (904 nm, 3J/cm²) and/or eccentric exercise (downhill walking; 12 m/min; 50 min/day; 15o inclination treadmill) began 24 hours after surgery and remained for 20 days. Clinical and biomechanical analyzes were conducted. Achilles tendon was macroscopically evaluated and the transversal diameter measured. Euthanasia was performed 21 days after lesion induction. Tendons of both limbs were collected and frozen at -20°C until biomechanical analysis, on which the characteristic of maximum load (N), stress at ultimate (MPa) and maximum extension (mm) were analyzed. Results: Swelling was observed within 72 hours postoperative. No fibrous adhesions were observed nor increase in transversal diameter of tendons. Animals with the exercised tendons, but not treated with laser therapy, presented lower (p=0.0000) locomotor capacity. No difference occurred be-tween groups for the biomechanical characteristics maximum load (p=0.4379), stress at ultimate (p=0.4605) and maximum extension (p=0.3820) evaluated, even considering healthy and contralateral tendons. Conclusion: The concomitant use of low-level laser and the eccentric exercise of downhill walking, starting 24 hours after surgically induced tendinopathy, do not result in a tendon with the same biomechanical resistance or elasticity as a healthy tendon. On the other hand, it also does not influence negatively the structure and function of the Achilles tendon.
Collapse
|
10
|
Mohsenifar Z, Feridoni MJ, Bayat M, Masteri Farahani R, Bayat S, Khoshvaghti A. Histological and biomechanical analysis of the effects of streptozotocin-induced type one diabetes mellitus on healing of tenotomised Achilles tendons in rats. Foot Ankle Surg 2014; 20:186-191. [PMID: 25103706 DOI: 10.1016/j.fas.2014.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Tendon healing is impaired in patient with diabetes mellitus. The effects of streptozotocin-induced type 1 diabetes (STZ-D) on the healing of the transected Achilles tendon in rats was studied. METHODS In the experimental group, type one diabetes was induced via administration of STZ. The right Achilles tendon of all the rats was transected 30 days after the STZ administration. The Achilles tendons were examined for biomechanical and histological examinations. RESULTS The statistical analysis showed that Young's modulus of elasticity and stress tensile load of the control group were significantly higher than those of the experimental group, and inflammation in the experimental group was significantly higher than that in the control group. At the same time, fibrosis in the experimental group was significantly lower than that of the control group. CONCLUSION Induction of type 1 diabetes by STZ significantly delayed the healing of the transected Achilles tendon in rats.
Collapse
Affiliation(s)
- Zhaleh Mohsenifar
- Pathology Department, Ayatallah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Javad Feridoni
- Anatomy and Biology Department, Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Bayat
- Anatomy and Biology Department, Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Reza Masteri Farahani
- Anatomy and Biology Department, Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Shiva Bayat
- Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
11
|
Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations. Lasers Med Sci 2014; 29:1495-503. [PMID: 24622817 DOI: 10.1007/s10103-014-1561-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
Abstract
Tendon healing is impaired in individuals diagnosed with diabetes mellitus (DM). According to research, there is considerable improvement in the healing of surgically tenotomized Achilles tendons following low-level laser therapy (LLLT) in non-diabetic, healthy animals. This study uses light microscopic (LM) and semi-quantitative reverse transcription PCR (RT-PCR) analyses to evaluate the ability of LLLT in healing Achilles tendons from streptozotocin-induced diabetic (STZ-D) rats. A total of 88 rats were randomly divided into two groups, non-diabetic and diabetic. DM was induced in the rats by injections of STZ. The right Achilles tendons of all rats were tenotomized 1 month after administration of STZ. Laser-treated rats were treated with a helium-neon (He-Ne) laser that had a 632.8-nm wavelength and 7.2-mW average power. Experimental group rats received a daily dose of 0.014 J (energy density, 2.9 J/cm(2)). Control rats did not receive LLLT. Animals were sacrificed on days 5, 10, and 15 post-operatively for semi-quantitative LM and semi-quantitative RT-PCR examinations of transforming growth factor-beta1 (TGF-β1) gene expression. The chi-square test showed that LLLT significantly reduced inflammation in non-diabetic rats compared with their non-diabetic controls (p = 0.02). LLLT significantly decreased inflammation in diabetic rats on days 5 (p = 0.03) and 10 (p = 0.02) compared to the corresponding control diabetic rats. According to the student's t test, LLLT significantly increased TGF-β1 gene expression in healthy (p = 0.000) and diabetic (p = 0.000) rats compared to their relevant controls. The He-Ne laser was effective in altering the inflammatory reaction and increasing TGF-β1 gene production.
Collapse
|
12
|
Tsai WC, Cheng JW, Chen JL, Chen CY, Chang HN, Liao YH, Lin MS, Pang JHS. Low-level laser irradiation stimulates tenocyte proliferation in association with increased NO synthesis and upregulation of PCNA and cyclins. Lasers Med Sci 2014; 29:1377-84. [PMID: 24510281 DOI: 10.1007/s10103-014-1528-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/13/2014] [Indexed: 01/15/2023]
Abstract
Low-level laser therapy is commonly used to treat tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. There are few evidence to elucidate that low-level laser promote tenocyte proliferation. This study was designed to determine the effect of laser on tenocyte proliferation. Furthermore, the association of this effect with secretion of nitric oxide (NO) and the expressions of proliferating cell nuclear antigen (PCNA) and cyclins D1, E, A, and B1 was investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm). Tenocyte proliferation was evaluated by MTT assay and immunocytochemistry with Ki-67 stain. NO in the conditioned medium was measured by ELISA. Western blot analysis was used to evaluate the protein expressions of PCNA and cyclins D1, E, A, and B1. The results revealed that tenocytes proliferation was enhanced dose dependently by laser. NO secretion was increased after laser treatment. PCNA and cyclins E, A, and B1 were upregulated by laser. In conclusion, low-level laser irradiation stimulates tenocyte proliferation in a process that is mediated by upregulation of NO, PCNA, and cyclins E, A, and B1.
Collapse
Affiliation(s)
- Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Gueishan Township, Taoyuan County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ibuki FK, Simões A, Nicolau J, Nogueira FN. Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats. Lasers Med Sci 2012; 28:911-8. [PMID: 22869159 DOI: 10.1007/s10103-012-1173-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to analyze the effect of low-power laser irradiation in the antioxidant enzymatic system of submandibular (SMG) and parotid (PG) salivary glands of streptozotocin-induced diabetic rats. The animals were randomly divided into six groups: three diabetic groups (D0, D5, and D20) and three non-diabetic groups (C0, C5, and C20), according to laser dose received (0, 5, and 20 J/cm(2), respectively). Areas of approximately 1 cm(2) were demarcated in the salivary glands (each parotid and both submandibular glands) and after irradiated according to Simões et.al. (Lasers Med Sci 24:202-208, 2009). A diode laser (660 nm/100 mW) was used, with laser beam spot of 0.0177 cm(2). The group treated with 5 J/cm(2) laser dose was subjected to irradiation for 1 min and 4 s (total irradiation time) and the group treated with 20 J/cm(2) laser dose was subjected to irradiation for 4 min and 16 s. Twenty-four hours after irradiation the animals were euthanized and the salivary glands were removed for biochemical analysis. The total antioxidant values (TA), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase enzymes were determined. SOD and CAT activities, as well as TA were higher in SMG of irradiated diabetic rats. However, in SMG of non-diabetic rats, laser irradiation decreased TA values and led to an increase in the CAT activity. In addition, there was a decrease in the activity of CAT in PG of diabetic and non-diabetic animals after laser irradiation. According to the results of the present study, low-power laser irradiation can affect the enzymatic antioxidant system of salivary glands of streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Flavia Kazue Ibuki
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil, 05508-000
| | | | | | | |
Collapse
|