1
|
Ramsey F, Borsdorf M, Ladner J, White A, Harrison TM. The Impact of Dermal Characteristics on Low-Level Laser Power Measurement in Postmortem Zoological Species. Vet Med Int 2024; 2024:8066943. [PMID: 39224541 PMCID: PMC11368545 DOI: 10.1155/2024/8066943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Photobiomodulation therapy, also termed as low-level laser therapy, is commonly used as an adjunctive therapy for various medical conditions in veterinary practice. The ACTIVet PRO low-level laser has been used for treatment of various nondomestic species, yet the effects of dermal attributes such as pigment, feathers, or scales have not been evaluated. The effects of low-level laser therapy with the ACTIVet PRO have been investigated in laboratory animals, including a study in rats that evaluated the passage of laser light through the skin in postmortem samples. The objective of this study was to measure the power of a low-level laser (ACTIVet PRO) after penetration through dermal tissue (∼1 mm thickness) in a variety of postmortem animal tissue. This study sought to determine the impact of fur, feathers, scales, and different pigments on the ability of the laser to penetrate. Frozen and thawed skin tissue samples from various species were placed inside a light restricted laser box and exposed to a preprogrammed laser level from a Multi Radiance ACTIVet PRO photobiomodulation (PBM) device, with a power meter to measure the light penetration through the tissue samples. Light penetration measurements via power output measurements (mW) were recorded at 7 time points (range, 1-150 sec). A Friedman test was performed to evaluate the difference of the mean tissue penetration by each species at each time point. Lighter colored specimens had higher power readings than darker colored or pigmented samples, and feathers appeared to inhibit the laser, showing minimal to no power readings on bird skin covered in covert and down feathers. There was statistically significant mean tissue penetration for all time points between the rabbit and green sea turtle (p=0.0046), the red-tailed hawk and green iguana (p=0.0046), and the red-tailed hawk and green sea turtle (p=0.000034). Overall findings found that certain skin coverings, such as feathers, appear to inhibit passage of laser light through tissue to the photo meter. Darker pigmented areas of tissue appeared to absorb the laser light, which also did not allow light passage through the tissue to the photo meter. All of this illustrates that there are differences in tissue penetration between different animal species, at least in postmortem tissues. This could necessitate adjustment of machine settings for therapeutic effect in different species, though further studies would be warranted to determine the extent to which this would be necessary. Additional studies evaluating biologically active tissues would be needed as a next step, as photobiomodulation has an effect at the cellular level and the exact amount of medical benefit is not measurable in skin samples that are separate from a living organism.
Collapse
Affiliation(s)
- Faith Ramsey
- Department of Clinical SciencesNorth Carolina State University College of Veterinary Medicine, Raleigh 27607, NC, USA
| | - Michelle Borsdorf
- Department of Clinical SciencesNorth Carolina State University College of Veterinary Medicine, Raleigh 27607, NC, USA
- Department of Clinical Veterinary MedicineUniversity of Illinois at Urbana-ChampaignCollege of Veterinary Medicine, Urbana 61802, IL, USA
| | - John Ladner
- Department of Clinical SciencesNorth Carolina State University College of Veterinary Medicine, Raleigh 27607, NC, USA
| | - Anne White
- Department of Clinical SciencesNorth Carolina State University College of Veterinary Medicine, Raleigh 27607, NC, USA
- Canadian Food Inspection Agency, Dartmouth B3B 1Y9, NS, Canada
| | - Tara M. Harrison
- Department of Clinical SciencesNorth Carolina State University College of Veterinary Medicine, Raleigh 27607, NC, USA
| |
Collapse
|
2
|
Průcha J, Šinkorová Z, Carrillo A, Burda T, Čuprová J. Radioreparative Effect of Diode Laser on Leukopoiesis Recovery: A Pilot Study. Life (Basel) 2024; 14:123. [PMID: 38255738 PMCID: PMC10817347 DOI: 10.3390/life14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of the present study was to investigate the effect of laser therapy on leukopoiesis recovery after irradiation with ionizing radiation. A dose of ionizing radiation was used that induced the hematological form of radiation sickness, reducing the number of blood cells. Subsequently, mice were treated with non-ionizing laser radiation. Based on the examination of the peripheral blood, the study found that laser therapy significantly impacted the number of eosinophils and basophils two weeks after irradiation. Laser therapy also led to the faster reparation of the lymphocyte lineage of white blood cells (WBCs). The research showed that the examined therapeutic laser had a long-term radioreparative effect on gamma-irradiated mice, improving the absolute counts of different lines of WBCs. The results of this study could have implications for the treatment of radiation sickness in humans.
Collapse
Affiliation(s)
- Jaroslav Průcha
- Department of Information and Communication Technologies in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.P.); (T.B.)
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 02 Hradec Králové, Czech Republic; (Z.Š.); (A.C.)
| | - Anna Carrillo
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 02 Hradec Králové, Czech Republic; (Z.Š.); (A.C.)
| | - Tomáš Burda
- Department of Information and Communication Technologies in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.P.); (T.B.)
| | - Julie Čuprová
- Department of Healthcare and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic
| |
Collapse
|
3
|
Ganipineni VDP, Gutlapalli SD, Ajay Sai Krishna Kumar I, Monica P, Vagdevi M, Samuel Sowrab T. Exploring the Potential of Energy-Based Therapeutics (Photobiomodulation/Low-Level Laser Light Therapy) in Cardiovascular Disorders: A Review and Perspective. Cureus 2023; 15:e37880. [PMID: 37214067 PMCID: PMC10199710 DOI: 10.7759/cureus.37880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Based on the review of the literature, this article examines the potential therapeutic benefits of photobiomodulation therapy (PBMT) or low-level laser therapy (LLLT) for the treatment of cardiovascular disorders. The methodology involved searching PubMed, Google Scholar, and Central databases for relevant articles published from inception till date. The articles included in this review were preclinical and clinical studies investigating the effects of PBMT and LLLT on the heart. The article summarizes the findings of nineteen studies investigating the effects of PBMT and LLLT on various parameters related to heart failure (HF) and myocardial infarction (MI), including inflammation, oxidative stress, angiogenesis, cardiac function, and remodeling. The studies suggest that PBMT and LLLT have potential therapeutic benefits for the treatment of cardiovascular diseases and could be used in combination with traditional pharmacological therapies to enhance their effects or as a stand-alone treatment for patients who are not responsive to or cannot tolerate traditional therapies. In conclusion, this review article highlights the promising potential of PBMT for the treatment of HF and MI and the need for further research to fully understand its mechanisms of action and optimize treatment protocols.
Collapse
Affiliation(s)
- Vijay Durga Pradeep Ganipineni
- Department of General Medicine, SRM Medical College Hospital and Research Center, Chennai, IND
- Department of General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center - Mount Sinai Health System/Icahn School of Medicine at Mount Sinai, Staten Island, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Potru Monica
- Department of Medicine, Guntur Medical College, Guntur, IND
| | - Moparthi Vagdevi
- Department of Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | | |
Collapse
|
4
|
Application of photobiomodulation for chronic pain-related TMD on pain points versus pre-established points: Randomized clinical trial. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112612. [PMID: 36459910 DOI: 10.1016/j.jphotobiol.2022.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Photobiomodulation therapy (PTB) is a therapeutic possibility for temporomandibular disorders (TMD), but its effectiveness and protocols for use remain controversial. This study is a RCT that compared the effectiveness of PTB on pain points of the masticatory muscles and TMJs, located through palpation versus application of pre-established points in women with painful TMD, diagnosis by DC/TMD (Diagnostic Criteria for Temporomandibular Disorders - Brazilian Portuguese version). Therefore, a total sample of 54 women, aged between 18 and 60 years, was investigated. Volunteers were randomly randomized and PTB was applied in four different groups with a dose of 4 J and 6 J divided into pre-established application points (PE - G1) and pain points (PD - G2) - Groups 4PE, 4PD, 6PE and 6PD. Four laser applications were performed with a wavelength of 780 nm, one session per week, totaling one month of therapy. The following assessments were performed: DC/TMD, Brief Pain Inventory (BPI), McGill Questionnaire - Short Version (SF-MPQ) and Pain Intensity, Visual Analogue Scale (VAS). Friedman's test was used for within-group comparisons, while the Mann-Whitney test was used for between-group comparisons (p < 0.05). According to the results, laser application on pain points (G2) was more effective. McGill's results showed that regardless of dose, the pain point application group had better outcomes (p = 0.004). Pain intensity evaluation (last days) also showed that application at the pain points was more effective regardless of dose (p = 0.0002). Medians and interquartile deviations showed overall that PTB was more effective at pain points, with a trend towards better outcomes at the 6 J dose. Therefore, it can be concluded that in women with chronic painful TMD, the application of PTB at pain points is more effective than the application at pre-established points. Therefore, individualized PTB protocols are proposed, based on examination palpation of the masticatory structures.
Collapse
|
5
|
Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Lopez TCC, Malavazzi TCDS, Rodrigues MFSD, Bach EE, Silva DT, Hi EMB, França CM, Bussadori SK, Mesquita-Ferrari RA, Fernandes KPS. Histological and biochemical effects of preventive and therapeutic vascular photobiomodulation on rat muscle injury. JOURNAL OF BIOPHOTONICS 2022; 15:e202100271. [PMID: 34978386 DOI: 10.1002/jbio.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The intravascular or transcutaneous application of photobiomodulation (PBM) over blood vessels (vascular photobiomodulation, VPBM) has been used for the treatment of inflammatory and chronic conditions with promising systemic results. This study evaluated the VPBM effects on a model of muscle regeneration after acute injury and compared the outcomes of preventive and therapeutic VPBM. Transcutaneous VPBM was administered over the rat's main tail vein. Serum levels of creatine kinase (CK), aspartate aminotransferase (AST), and lactate were evaluated and muscles were processed for macroscopic and microscopic analysis. Preventive and therapeutic VPBM led to decreased inflammatory infiltrate, edema, and myonecrosis but with an increase in immature muscle fibers. CK, AST, and lactate levels were lower in the groups treated with VPBM (lowest concentrations in preventive VPBM application). Preventive and therapeutic VPBM were capable of exerting a positive effect on acute muscle injury repair, with more accentuated results when preventive VPBM was administered.
Collapse
Affiliation(s)
- Talita Christine Camillo Lopez
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | | | | | | | - Daniela Teixeira Silva
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Edgar Matias Bach Hi
- Experimental Biochemistry Academic Nucleum (NABEX), UNILUS (Centro Universitário Lusiada), Santos, São Paulo, Brazil
| | - Cristiane Miranda França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, São Paulo, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Lyu K, Liu X, Jiang L, Chen Y, Lu J, Zhu B, Liu X, Li Y, Wang D, Li S. The Functions and Mechanisms of Low-Level Laser Therapy in Tendon Repair (Review). Front Physiol 2022; 13:808374. [PMID: 35242050 PMCID: PMC8886125 DOI: 10.3389/fphys.2022.808374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tendon injury is a common disease of the musculoskeletal system, accounting for roughly 30%–40% of sports system disorder injuries. In recent years, its incidence is increasing. Many studies have shown that low-level laser therapy (LLLT) has a significant effect on tendon repair by firstly activating cytochrome C oxidase and thus carrying out the photon absorption process, secondly acting in all the three phases of tendon repair, and finally improving tendon recovery. The repair mechanisms of LLLT are different in the three phases of tendon repair. In the inflammatory phase, LLLT mainly activates a large number of VEGF and promotes angiogenesis under hypoxia. During the proliferation phase, LLLT increases the amount of collagen type III by promoting the proliferation of fibroblasts. Throughout the remodeling phase, LLLT mainly activates M2 macrophages and downregulates inflammatory factors, thus reducing inflammatory responses. However, it should also be noted that in the final phase of tendon repair, the use of LLLT causes excessive upregulation of some growth factors, which will lead to tendon fibrosis. In summary, we need to further investigate the functions and mechanisms of LLLT in the treatment of tendon injury and to clarify the nature of LLLT for the treatment of diverse tendon injury diseases.
Collapse
Affiliation(s)
- Kexin Lyu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Alsarayreh AZ, AttalahOran S, Mutie Shakhanbeh J. In vitro and in vivo wound healing activities of Globularia arabica leaf methanolic extract in diabetic rats. J Cosmet Dermatol 2022; 21:4888-4900. [PMID: 35212131 DOI: 10.1111/jocd.14882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
AIM This study assessed the effects of topical application of the plant Globularia arabica extract on the diabetic rate of wound closure. METHODS The effect of methanol extracts of G. arabica leaf extract on pro-inflammatory and anti-inflammatory cytokines, as well as the rate of wound contraction, hydroxyproline, and collagen content, was examined using an excision model of wound repair in male rats. RESULTS The healing pattern was also highly related to using 10% plant extract and significantly, (p-Values < 0.025) increased wound contraction and increased Hydroxyproline and collagen expression in both non-diabetic and diabetic rats, demonstrating that G. arabica extract possesses potent wound healing capacity. During the early wound healing phase, IL-6 levels were found to be up-regulated by G. arabica treatment. Increased wound contraction augmented hydroxyproline and collagen content, supporting the early wound healing exhibited by G. arabica. One of the ways for speeding wound healing may be the induction of cytokine production. The result of our study shows that the fibroblast cell line treated with 20µg/ml methanolic extract of G. arabica significantly (p-Values < 0.035) increases the cell migration that indicated the high wound healing activity CONCLUSION: Results suggest that G. arabica may be useful in the topical management of wound healing.
Collapse
Affiliation(s)
- Ahmad Za'al Alsarayreh
- Dept. of Biological Sciences, Faculty of Sciences, University of Jordan, Amman Jordan.,Department of Biological Sciences, Mutah University, Karak, Jordan
| | - Sawsan AttalahOran
- Dept. of Biological Sciences, Faculty of Sciences, University of Jordan, Amman Jordan
| | | |
Collapse
|
9
|
Photobiomodulation Therapy Applied after 6 Months for the Management of a Severe Inferior Alveolar Nerve Injury. Life (Basel) 2021; 11:life11121420. [PMID: 34947950 PMCID: PMC8706621 DOI: 10.3390/life11121420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Despite its significant negative impact on the quality of life, the methods for the management of the inferior alveolar nerve (IAN) injury are still limited. In this case report, the patient did not show any improvement from the day of the iatrogenic accident until 6 months. A significant improvement of the symptoms started to appear only at 6 months when PBMT was applied. A total of 42 sessions of PBMT took place. The application zone included intraoral and extraoral areas. The parameters were: Delivery power of 0.1 W, for 40 s, continuous wave (CW), contact mode, and delivered energy of 4 J. The delivered energy density related to the fiber diameter was 1415 J/cm2. Each treated point was considered to be 1 cm2 of diameter. At the end of the treatment, all of the symptoms disappeared except for an abnormal sensation on touching the mucosa and gingiva of the concerned area. No side effects were noted. This case report shows that PBMT can be a very promising approach for the management of severe cases that are not improving with conventional methods.
Collapse
|
10
|
Indirect Structural Muscle Injuries of Lower Limb: Rehabilitation and Therapeutic Exercise. J Funct Morphol Kinesiol 2021; 6:jfmk6030075. [PMID: 34564194 PMCID: PMC8482242 DOI: 10.3390/jfmk6030075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle injuries are the most common trauma in team and individual sports. The muscles most frequently affected are those of the lower limb, and in particular hamstrings, adductors, rectus femoris and calf muscles. Although several scientific studies have tried to propose different rehabilitation protocols, still too often the real rehabilitation process is not based on scientific knowledge, especially in non-elite athletes. Moreover, the growing use of physical and instrumental therapies has made it increasingly difficult to understand what can be truly effective. Therefore, the aim of the present paper is to review proposed therapeutic algorithms for muscle injuries, proposing a concise and practical summary. Following a three-phase rehabilitation protocol, this review aims to describe the conservative treatment of indirect structural muscle injuries, which are the more routinely found and more challenging type. For each phase, until return to training and return to sport are completed, the functional goal, the most appropriate practitioner, and the best possible treatment according to current evidence are expressed. Finally, the last section is focused on the specific exercise rehabilitation for the four main muscle groups with a structured explanatory timetable.
Collapse
|
11
|
Rochkind S, Almog M. Protective Effect of Photobiomodulation on Denervated and Crushed Muscle. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:435-436. [PMID: 34264765 DOI: 10.1089/photob.2021.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shimon Rochkind
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Almog M, Nissan M, Koifman I, Wollman Y, Rochkind S. On-Site Laser Photobiomodulation Treatment of Crushed Muscle Due to Prolonged Pressure in Rats. Lasers Surg Med 2021; 53:1258-1265. [PMID: 34101204 DOI: 10.1002/lsm.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/06/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Crush injuries and prolonged pressure on muscles lead to bruises and sprains and, in most of the cases, cause distraction of the muscle and release of particles into the blood stream, causing renal and systemic complications in severe cases. Laser photobiomodulation treatment (i.e., laser phototherapy) is a method suggested to decrease the pressure damage in the first 24-48 hours after muscle injury, allowing a faster and more complete physical rehabilitation. We studied the efficacy of non-invasive laser photobiomodulation treatment as an on-site treatment for crush-injured gastrocnemius muscles, developing a moderate muscle crush injury model and aiming at decreasing damage extent while regaining physical competence faster. STUDY DESIGN/MATERIALS AND METHODS Muscle crush injury was performed on 30 female Wistar rats using direct pressure for 10 minutes on the gastrocnemius muscle in both left and right hindlimbs. Immediately after the injury, only the left hindlimb were irradiated for 16 minutes (with 780 nm laser with a power of 250 mW, the energy at the target was 240 J, and the fluence was 1019 J/cm2 ) for 1, 3, or 7 consecutive days, and sacrificed accordingly. During the follow-up period, 1, 3, or 7 days, both gastrocnemius muscles (of the treated and untreated hindlimbs) were evaluated for electrophysiology and functionality. RESULTS The laser photobiomodulation treatment showed a significant electrophysiological and functional recovery of the gastrocnemius muscle during the first 3 days after injury, in comparison with the untreated hindlimb. CONCLUSIONS These preliminary results are promising, showing a significant effect of the laser photobiomodulation treatment during the first 3 days after the induction of the muscle crush injury, which is the most critical period in the clinical aspect. These findings suggest a therapeutic approach, which may help restore the muscle after crush injury.
Collapse
Affiliation(s)
- Mara Almog
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Moshe Nissan
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Igal Koifman
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Yoram Wollman
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Shimon Rochkind
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Thirupathi A, Pinho RA, Baker JS, István B, Gu Y. Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle. Front Physiol 2020; 11:582449. [PMID: 33192592 PMCID: PMC7649292 DOI: 10.3389/fphys.2020.582449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise-induced oxidative stress is linked with the expression level of endogenous antioxidants, but these antioxidants cannot overcome all oxidative stress-related damages in the cells, particularly when cells are under physiological stress. Sometimes, compounds are needed for cellular function, which are produced/activated within the cells, and these compounds can be synthesized by performing exercise, especially high-performance exercise. Taurine is a sulfur-containing amino acid used for various physiological functions. However, its synthesis and accumulation under the oxidative environment may be compromised. Recently, we have shown that taurine level is increased during exercise performance with a decrease in oxidative damage in overused muscles. Other studies have also shown that short-term supplementation with taurine increased physiological performance during severe work intensities, suggesting the role of taurine in improving muscle performance during exercise. However, its precursor cysteine is used in the synthesis of other compounds like GSH and Coenzyme A, which are important for regulating the redox system and energy homeostasis. It is, therefore, important to understand whether taurine synthesis within the cells can blunt the activity of other compounds that are beneficial in preventing oxidative damage during intense exercise. Furthermore, it is important to understand whether taurine supplementation can prevent the conditions observed in the physiological stress of muscles. This review discusses how taurine synthesis could alter exercise-induced ROS generation and the relationship between the physiological stress of muscle and subsequent improvements in exercise performance.
Collapse
Affiliation(s)
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Julien S Baker
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Bíró István
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Rajendran NK, Houreld NN, Abrahamse H. Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. J Cell Commun Signal 2020; 15:195-206. [PMID: 33052534 DOI: 10.1007/s12079-020-00588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2, and power density of 10.3 mW/cm2). Non-irradiated cell models were used as controls. Cellular migration was determined at regular time intervals (0, 12, 24 and 48 h) using inverted light microscopy. Cell viability was determined by the Trypan blue exclusion assay. The levels of enzymic antioxidants superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1) were determined by the enzyme linked immunosorbent assay (ELISA). The alteration in the levels of AKT and FOXO1 was determined by immunofluorescence and western blotting. Upon PBM treatment, elevated oxidative stress was reversed in diabetic and diabetic wounded fibroblast cells. The reduced oxidative stress was represented by decreased FOXO1 levels and increased levels of SOD, CAT and HMOX1. This might be due to the activation of the AKT signaling pathway. This study concluded that treatment with PBM progressed diabetic wound healing by attenuating oxidative stress through inhibition of the FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
15
|
Kudsi SQ, Antoniazzi CTDD, Camponogara C, Brum EDS, Brusco I, Peres DS, Fischer SPM, Dalenogare DP, Stein CDS, Zaccaron RP, Silveira PCL, Moresco RN, Oliveira SM, Trevisan G. Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats. Eur J Pharmacol 2020; 883:173284. [DOI: 10.1016/j.ejphar.2020.173284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
|
16
|
Haupenthal DPDS, Dias FM, Zaccaron RP, Silveira GDB, Corrêa MEAB, Mendes C, Casagrande LDR, Pinho RA, de Andrade TAM, Feuser PE, Paula MMDS, Silveira PCL. Effects of phonophoresis with ibuprofen associated with gold nanoparticles in animal model of traumatic muscle injury. Eur J Pharm Sci 2020; 143:105120. [DOI: 10.1016/j.ejps.2019.105120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
|
17
|
Dos Santos Haupenthal DP, Zortea D, Zaccaron RP, de Bem Silveira G, Corrêa MEAB, Mendes C, de Roch Casagrande L, Duarte MB, Pinho RA, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110681. [PMID: 32204109 DOI: 10.1016/j.msec.2020.110681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/31/2022]
Abstract
The use of nanotechnology for administering drugs is a recent development that presents promising results. Therapeutic Pulsed Ultrasound (TPU) is one such therapeutic option and is widely used for treating soft tissue lesions. Thus, the objective of this study was to investigate the therapeutic effect of phonophoresis using diclofenac (DC) linked to gold nanoparticles (GNPs) in the skeletal muscle of rats used as a model of traumatic muscular injury. Wistar rats were divided into eight groups (N = 10): Sham, Muscle injury (MI), MI + TPU, MI + DC, MI + GNPs, MI + TPU + DC, MI + TPU + GNPs, and MI + TPU + DC-GNPs. The traumatic injury was performed in the gastrocnemius with a single direct traumatic impact via an injuring press. The animals received daily treatment for 5 consecutive days with TPU and gel with DC and/or GNPs. Two hours after the last treatment session, animals were euthanized and the gastrocnemius muscle surgically removed for histological and biochemical analysis. The groups exposed to some therapies (MI + TPU + DC, MI + TPU + GNPs and MI + TPU + DC-GNPs) showed reduced levels of pro-inflammatory cytokines, whereas an increase in anti-inflammatory cytokine levels was observed in the group exposed to all therapies combined (MI + TPU + DC-GNPs). Reactive species production and protein damage resulting from oxidative damage was lower for the group exposed to all tested therapies had lower production. Lower protein damage was also observed in the TPU + GNPs group. The group that underwent all tested therapies combined showed a significant increase in antioxidants compared to the MI group. During histological analysis, the MI group showed large amounts of cell infiltration and centralized nuclei, whereas the MI + TPU + DC-GNPs group showed structural improvements. Pain levels in the MI + TPU + DC-GNPs group were lower than those of the MI group. We believe that the association of TPU with DC linked to GNPs decreases the inflammation caused by traumatic muscle injury and accelerates tissue repair.
Collapse
Affiliation(s)
- Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Diogo Zortea
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Mariane Bernardo Duarte
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil.
| |
Collapse
|
18
|
Abstract
Diabetic patients frequently develop chronic ulcers of the lower extremities, which are a frequent cause for hospitalization and amputation, placing strain on patients, their families, and healthcare systems. Present therapies remain a challenge, with high recurrence rates. Photobiomodulation (PBM), which is the non-invasive application of light at specific wavelengths, has been shown to speed up healing of chronic wounds, including diabetic foot ulcers (DFUs). PBM produces photophysical and photochemical changes within cells without eliciting thermal damage. It has been shown to promote tissue regeneration and speed up wound repair by reducing inflammation and oxidative stress, accelerating cell migration and proliferation, and promoting extracellular matrix production and release of essential growth factors. The shortage of rigorous, well-designed clinical trials makes it challenging to assess the scientific impact of PBM on DFUs, and lack of understanding of the underlying mechanisms also hinders the conventional use of this therapy. This review gives a glimpse into diabetic wound healing and PBM, and the effects of PBM on diabetic wound healing.
Collapse
|
19
|
Magri LV, Bataglion C, Leite-Panissi CRA. Follow-up results of a randomized clinical trial for low-level laser therapy in painful TMD of muscular origins. Cranio 2019; 39:502-509. [PMID: 31585522 DOI: 10.1080/08869634.2019.1673588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To characterize short- and long-term assessment of the low-intensity laser therapy (LLLT) effectiveness in women with TMD of muscular origins and to evaluate whether the information about the treatment received (active or placebo) modifies the pain intensity.Methods: Forty-one women with painful TMD (31.7 ± 5.2 years) were divided into laser (n = 20) and placebo (n = 21) groups. The pain intensity was measured at the baseline, after the LLLT (T8), 6 and 12 months. At the 6-month follow-up, the groups received information about the active or placebo treatment.Results: At T8 and 6-month, both active and placebo LLLT were effective in reducing pain (p < .05). After one year, the groups showed similar pain. Active LLLT was more effective in reducing pain palpation (p = .001) and referred pain (p = .04) in the region of the TMJs. The information about the treatment modified the perceived pain intensity.Conclusion: Active and placebo LLLT are effective for painful TMD of muscular origins in the short-term. Information about the treatment impairs the subjective perception of pain.
Collapse
Affiliation(s)
- Laís Valencise Magri
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Restorative Dentistry of Dentistry School of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - César Bataglion
- Department of Restorative Dentistry of Dentistry School of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
20
|
da Rocha FR, Haupenthal DPDS, Zaccaron RP, Corrêa MEAB, Tramontin NDS, Fonseca JP, Nesi RT, Muller AP, Pinho RA, Paula MMDS, Silveira PCL. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. J Drug Target 2019; 28:307-319. [PMID: 31379221 DOI: 10.1080/1061186x.2019.1652617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies have shown the benefits of gold nanoparticles (GNPs) in muscle and epithelial injury models. In physiotherapy, the use of the microcurrent apparatus is associated with certain drugs (Iontophoresis) to increase the topical penetration and to associate the effects of both therapies. Therefore, the objective of this study was to investigate the effects of iontophoresis along with GNPs in the skeletal muscle of rats exposed to a traumatic muscle injury. We utilised 50 Wistar rats randomly divided in to five experimental groups (n = 10): Control group (CG); Muscle injury group (MI); MI + GNPs (20 nm, 30 mg kg-1); MI + Microcurrent (300 μA); and MI + Microcurrent + GNPs. The treatment was performed daily for 7 days, with the first session starting at 24 h after the muscle injury. The animals were sacrificed and the gastrocnemius muscle was surgically removedand stored for the proper evaluations. The group that received iontophoresis with GNPs showed significant differences in inflammation and oxidative stress parameters and in the histopathological evaluation showed preserved morphology. In addition, we observed an improvement in the locomotor response and pain symptoms of these animals. These results suggest that the association of boththerapies accelerates the inflammatory response of the injured limb.
Collapse
Affiliation(s)
- Franciani Rodrigues da Rocha
- Laboratory of Experimental Phisiopatology, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Daniela Pacheco Dos Santo Haupenthal
- Laboratory of Experimental Phisiopatology, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Natalia Dos Santos Tramontin
- Laboratory of Translacional Biomedicine, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jeandro Paes Fonseca
- Postgraduate Program in Materials Science and Engineering, Federal Amazonas University, Manaus-Amazonas, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Alexandre Pastoris Muller
- Laboratory of Translacional Biomedicine, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | | | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of Post Graduate in Science of Health, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
21
|
da Costa Santos VB, Correa JCM, Chierotti P, Ballarin GS, de Oliveira Toginho Filho D, Nakamura FY, de Paula Ramos S. Cold water immersion or LED therapy after training sessions: effects on exercise-induced muscle damage and performance in rats. Lasers Med Sci 2018; 34:991-999. [PMID: 30456534 DOI: 10.1007/s10103-018-2689-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
Abstract
Cryotherapy and phototherapy have been suggested as recovery methods due to their anti-inflammatory effects. They may also induce mitochondrial biogenesis, thus favoring endurance training adaptation. The aim of this study was to evaluate the anti-inflammatory and ergogenic effects of phototherapy or cold water immersion (CWI) applied daily after exercise in rats. Thirty-five rats were divided into five groups: control (CO), non-exercised (CE), passive recovery (PR), cold water immersion (CWI), and LED therapy (LED). The CO and CE groups were not submitted to training; however, the CE were submitted to an exhaustion test after the training period. Low-intensity swimming training (21 sessions, 45 min) was performed followed by passive recovery (PR), CWI (10 °C, 5 min), or infrared irradiation (940 nm, 4 J/cm2). Forty-eight hours after the final training session, the CE, PR, CWI, and LED animals were submitted to an exhaustion test. The animals were euthanized 24 h later and submitted to hematological, creatine kinase (CK), and C-reactive protein (PCR) analysis. Gastrocnemius and soleus muscles were submitted to histological analysis. No differences in blood cell counts, CK, and PCR were detected between groups. The CE group presented an increased number of areas with necrosis in the gastrocnemius and soleus muscles. The PR group presented the highest frequency of areas with edema and inflammation followed by CWI and LED groups. None of the recovery methods improved the performance in the exhaustion test. Successive applications of recovery methods do not improve exercise performance, but downmodulate the inflammation and prevent muscle necrosis.
Collapse
Affiliation(s)
| | | | - Priscila Chierotti
- Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Giovana Stipp Ballarin
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Fábio Yuzo Nakamura
- Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Solange de Paula Ramos
- Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil.
- Department of Histology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR 445 Km 380, Londrina, Paraná, 86051-990, Brazil.
| |
Collapse
|
22
|
Odinokov D, Hamblin MR. Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells? JOURNAL OF BIOPHOTONICS 2018; 11:e201700282. [PMID: 29227581 PMCID: PMC5995606 DOI: 10.1002/jbio.201700282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/07/2017] [Indexed: 05/27/2023]
Abstract
Thymic atrophy and the subsequent reduction in T-cell production are the most noticeable age-related changes affecting lymphoid organs in the immune system. In fact, thymic involution has been described as "programmed aging." New therapeutic approaches, such as photobiomodulation (PBM), may reduce or reverse these changes. PBM (also known as low-level laser therapy) involves the delivery of non-thermal levels of red or near-infrared light that are absorbed by mitochondrial chromophores, in order to prevent tissue death and stimulate healing and regeneration. PBM may reverse or prevent thymic involution due to its ability to induce extrapineal melatonin biosynthesis via cyclic adenosine monophosphate (AMP) or NF-kB activation, or alternatively by stimulating bone marrow stem cells that can regenerate the thymus. This perspective puts forward a hypothesis that PBM can alter thymic involution, improve immune functioning in aged people and even extend lifespan.
Collapse
Affiliation(s)
- Denis Odinokov
- Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
23
|
Bisciotti GN, Volpi P, Amato M, Alberti G, Allegra F, Aprato A, Artina M, Auci A, Bait C, Bastieri GM, Balzarini L, Belli A, Bellini G, Bettinsoli P, Bisciotti A, Bisciotti A, Bona S, Brambilla L, Bresciani M, Buffoli M, Calanna F, Canata GL, Cardinali D, Carimati G, Cassaghi G, Cautero E, Cena E, Corradini B, Corsini A, D'Agostino C, De Donato M, Delle Rose G, Di Marzo F, Di Pietto F, Enrica D, Eirale C, Febbrari L, Ferrua P, Foglia A, Galbiati A, Gheza A, Giammattei C, Masia F, Melegati G, Moretti B, Moretti L, Niccolai R, Orgiani A, Orizio C, Pantalone A, Parra F, Patroni P, Pereira Ruiz MT, Perri M, Petrillo S, Pulici L, Quaglia A, Ricciotti L, Rosa F, Sasso N, Sprenger C, Tarantola C, Tenconi FG, Tosi F, Trainini M, Tucciarone A, Yekdah A, Vuckovic Z, Zini R, Chamari K. Italian consensus conference on guidelines for conservative treatment on lower limb muscle injuries in athlete. BMJ Open Sport Exerc Med 2018; 4:e000323. [PMID: 29862040 PMCID: PMC5976114 DOI: 10.1136/bmjsem-2017-000323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Provide the state of the art concerning (1) biology and aetiology, (2) classification, (3) clinical assessment and (4) conservative treatment of lower limb muscle injuries (MI) in athletes. Seventy international experts with different medical backgrounds participated in the consensus conference. They discussed and approved a consensus composed of four sections which are presented in these documents. This paper represents a synthesis of the consensus conference, the following four sections are discussed: (i) The biology and aetiology of MIs. A definition of MI was formulated and some key points concerning physiology and pathogenesis of MIs were discussed. (ii) The MI classification. A classification of MIs was proposed. (iii) The MI clinical assessment, in which were discussed anamnesis, inspection and clinical examination and are provided the relative guidelines. (iv) The MI conservative treatment, in which are provided the guidelines for conservative treatment based on the severity of the lesion. Furthermore, instrumental therapy and pharmacological treatment were discussed. Knowledge of the aetiology and biology of MIs is an essential prerequisite in order to plan and conduct a rehabilitation plan. Another important aspect is the use of a rational MI classification on prognostic values. We propose a classification based on radiological investigations performed by ultrasonography and MRI strongly linked to prognostic factors. Furthermore, the consensus conference results will able to provide fundamental guidelines for diagnostic and rehabilitation practice, also considering instrumental therapy and pharmacological treatment of MI. Expert opinion, level IV.
Collapse
Affiliation(s)
- Gian Nicola Bisciotti
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | - Piero Volpi
- Istituto Clinico Humanitas, Milano, Italy
- FC Internazionale, Milano, Italy
| | | | | | | | | | | | - Alessio Auci
- UOS Angiografia e Radiologia Interventistica, Ospedale delle Apuane, Massa-Carrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emanuele Cena
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Biagio Moretti
- Azienda Ospedaliero-Universitaria “Policlinico”, Bari, Italy
| | - Lorenzo Moretti
- Azienda Ospedaliero-Universitaria “Policlinico”, Bari, Italy
| | | | | | | | | | - Federica Parra
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | | | | | - Luca Pulici
- Istituto Ortopedico Gaetano Pini, Milano, Italy
| | | | - Luca Ricciotti
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | | | | | | | - Fabio Tosi
- Centro Studi Kinemove Rehabilitation Centers, Pontremoli, Italy
| | | | | | - Ali Yekdah
- FAF Jenia Centre Med Sport, Algeri, Algeria
| | - Zarko Vuckovic
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| | - Raul Zini
- Maria Cecilia Hospital, Cotignola, Italy
| | - Karim Chamari
- Qatar Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| |
Collapse
|
24
|
Thirupathi A, Pinho RA. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem 2018; 74:359-367. [PMID: 29713940 DOI: 10.1007/s13105-018-0633-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, Santa Catarina, 88806-000, Brazil.
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, Santa Catarina, 88806-000, Brazil
| |
Collapse
|
25
|
Thirupathi A, Freitas S, Sorato HR, Pedroso GS, Effting PS, Damiani AP, Andrade VM, Nesi RT, Gupta RC, Muller AP, Pinho RA. Modulatory effects of taurine on metabolic and oxidative stress parameters in a mice model of muscle overuse. Nutrition 2018; 54:158-164. [PMID: 29982143 DOI: 10.1016/j.nut.2018.03.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the regulatory effects of taurine on the biochemical parameters of muscle injury by overuse. METHODS Male Swiss mice were divided into four groups: control (Ctrl), overuse (Ov), taurine (Tau), and overuse plus taurine (OvTau). High-intensity exercise sessions were administered for 21 d with concomitant subcutaneous injections of taurine (150 mg/kg). The mice were then sacrificed. The quadriceps muscles were surgically removed for subsequent histologic analysis and evaluation of mitochondrial function, oxidative stress parameters, tissue repair, and DNA damage markers. RESULTS The Ov group showed significant differences compared with the Ctrl group (all P <0.05). The fiber area decreased by 49.34%, whereas the centralized nuclei contents (Ctrl = 1.33%; Ov = 28.67%), membrane potential (Ctrlsuc = 179.05 arbitrary fluorescence units (AFUs), Ctrlsuc+ADP = 198.11 AFUs; Ovsuc = 482.95 AFUs, Ovsuc+ADP = 461.6 AFUs), complex I activity (Ctrl = 20.45 nmol ⋅ min ⋅ mg protein, Ov = 45.25 nmol ⋅ min ⋅ mg protein), hydrogen peroxide (Ctrlsuc = 1.08 relative fluorescence unit (RFU) ⋅ sec ⋅ mg protein, Ctrlsuc+ADP = 0.23 RFU ⋅ sec ⋅ mg protein; Ovsuc = 5.02 RFU ⋅ sec ⋅ mg protein, Ovsuc+ADP = 0.26 RFU ⋅ sec ⋅ mg protein) and malondialdehyde (Ctrl = 0.03 nmol ⋅ mg ⋅ protein, Ov = 0.06 nmol ⋅ mg ⋅ protein) levels, and DNA damage (Ctrlfreq = 7.17%, Ovfreq = 31.17%; Ctrlindex = 4.17, Ovindex = 72.5) were increased. Taurine administration reduced the number of centralized nuclei (OvTau = 5%), hydrogen peroxide levels (OvTausuc = 2.81 RFU ⋅ sec ⋅ mg protein, OvTaussuc+ADP = 1.54 RFU ⋅ sec ⋅ mg protein), membrane potential (OvTausuc = 220.18 AFUs, OvTaussuc+ADP = 235.28 AFUs), lipid peroxidation (OvTau = 0.02 nmol/mg protein), and DNA damage (OvTaufreq = 21.33%, OvTauindex = 47.83) and increased the fiber area by 54% (all P <0.05). CONCLUSION Taken together, these data suggest that taurine supplementation modulates various cellular remodeling parameters after overuse-induced muscle damage, and that these positive effects may be related to its antioxidant capacity.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Sharon Freitas
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Helen R Sorato
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Giulia S Pedroso
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Pauline S Effting
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata T Nesi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | | | - Alexandre P Muller
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Graduate Program in Health Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
26
|
Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 2018. [PMID: 29520687 DOI: 10.1007/s10103-017-2432-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P ≤ 0.001), HW- (P ≤ 0.01) and DHW-cells (P ≤ 0.05). HW-cells showed a significant progression in the S-phase (P ≤ 0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P ≤ 0.05 and P ≤ 0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).
Collapse
Affiliation(s)
- S M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - N N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| | - H Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
27
|
Santos CP, Aguiar AF, Giometti IC, Mariano TB, de Freitas CEA, Nai GA, de Freitas SZ, Pai-Silva MD, Pacagnelli FL. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats. Lasers Med Sci 2018; 33:843-850. [PMID: 29333581 DOI: 10.1007/s10103-018-2439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
The aim of this study was to determine the effects of gallium arsenide (GaAs) laser on IGF-I, MyoD, MAFbx, and TNF-α gene expression during the intermediate phase of muscle regeneration after cryoinjury 21 Wistar rats were divided into three groups (n = 7 per group): untreated with no injury (control group), cryoinjury without GaAs (injured group), and cryoinjury with GaAs (GaAs-injured group). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The region injured was irradiated once a day during 14 days using GaAs laser (904 nm; spot size 0.035 cm2, output power 50 mW; energy density 69 J cm-2; exposure time 4 s per point; final energy 4.8 J). Twenty-four hours after the last application, the right and left TA muscles were collected for histological (collagen content) and molecular (gene expression of IGF-I, MyoD, MAFbx, and TNF-α) analyses, respectively. Data were analyzed using one-way ANOVA at P < 0.05. There were no significant (P > 0.05) differences in collagen density and IGF-I gene expression in all experimental groups. There were similar (P < 0.05) decreases in MAFbx and TNF-α gene expression in the injured and GaAs-injured groups, compared to control group. The MyoD gene expression increased (P = 0.008) in the GaAs-injured group, but not in the injured group (P = 0.338), compared to control group. GaAs laser therapy had a positive effect on MyoD gene expression, but not IGF-I, MAFbx, and TNF-α, during intermediary phases (14 days post-injury) of muscle repair.
Collapse
Affiliation(s)
- Caroline Pereira Santos
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Andreo Fernando Aguiar
- Center of Research in Health Science, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, 86041-120, Brazil.
| | - Ines Cristina Giometti
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Thaoan Bruno Mariano
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Gisele Alborghetti Nai
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Selma Zambelli de Freitas
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Maeli Dal Pai-Silva
- Department of Morphology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francis Lopes Pacagnelli
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
28
|
Non-specific effects and clusters of women with painful TMD responders and non-responders to LLLT: double-blind randomized clinical trial. Lasers Med Sci 2017; 33:385-392. [DOI: 10.1007/s10103-017-2406-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
|
29
|
Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5273403. [PMID: 29075364 PMCID: PMC5623775 DOI: 10.1155/2017/5273403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023]
Abstract
This systematic review was performed to identify the role of photobiomodulation therapy on experimental muscle injury models linked to induce oxidative stress. EMBASE, PubMed, and CINAHL were searched for studies published from January 2006 to January 2016 in the areas of laser and oxidative stress. Any animal model using photobiomodulation therapy to modulate oxidative stress was included in analysis. Eight studies were selected from 68 original articles targeted on laser irradiation and oxidative stress. Articles were critically assessed by two independent raters with a structured tool for rating the research quality. Although the small number of studies limits conclusions, the current literature indicates that photobiomodulation therapy can be an effective short-term approach to reduce oxidative stress markers (e.g., thiobarbituric acid-reactive) and to increase antioxidant substances (e.g., catalase, glutathione peroxidase, and superoxide dismutase). However, there is a nonuniformity in the terminology used to describe the parameters and dose for low-level laser treatment.
Collapse
|
30
|
Garcia TA, Camargo RCT, Koike TE, Ozaki GAT, Castoldi RC, Camargo Filho JCS. Histological analysis of the association of low level laser therapy and platelet-rich plasma in regeneration of muscle injury in rats. Braz J Phys Ther 2017; 21:425-433. [PMID: 28733091 PMCID: PMC5693427 DOI: 10.1016/j.bjpt.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/20/2016] [Accepted: 04/03/2017] [Indexed: 01/30/2023] Open
Abstract
LLLT and PRP can be used to enhance muscle regeneration. The association of LLLT with PRP produces better treatment than their use in isolation. LLLT could modulate the production of collagen during muscle injury.
Objective Muscle injuries are common, and their treatment requires costs and time off. Platelet rich plasma and low level laser therapy have been shown to be affordable and easy to use. The aim of this study was to evaluate the associated effects of low level laser therapy and platelet rich plasma on the treatment of the soleus muscle injured by strain in rats. Methods Thirty-five rats were randomly allocated into five groups: Control (C), Injury Control (IC), injury PRP (IP), injury LLLT (ILT) and injury LLLT and PRP (ILTP). The strain injury was induced in the soleus muscle and the IP group received application of platelet rich plasma immediately after the lesion, while the ILT group received low level laser therapy. After seven days, all animals were euthanized and the soleus muscle removed for further histological analysis. Results The association of both treatments (ILTP) resulted in better histological aspects than the low level laser therapy and platelet rich plasma alone, when compared with the injury group (IC). The collagen analysis exhibited a significant increase in the ILT group (2.99 SD = 1.13) compared to the C (1.88 SD = 0.41, p = 0.012) and IP (2.04 SD = 0.44, p = 0.018). Conclusion The association of low level laser therapy with platelet rich plasma produced better results on muscle injury compared to the isolated use of these therapies. Furthermore, none of the treatments could modulate the collagen deposition in relation to injury group.
Collapse
Affiliation(s)
- Thiago Alves Garcia
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-graduação em Ciências da Cirurgia, Campinas, SP, Brazil.
| | | | - Tatiana Emy Koike
- Universidade Estadual Paulista (UNESP),Departamento de Fisioterapia, Presidente Prudente, SP, Brazil
| | - Guilherme Akio Tamura Ozaki
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-graduação em Ciências da Cirurgia, Campinas, SP, Brazil
| | - Robson Chacon Castoldi
- Universidade Estadual de Campinas (UNICAMP), Programa de Pós-graduação em Ciências da Cirurgia, Campinas, SP, Brazil
| | | |
Collapse
|
31
|
Pissulin CNA, de Souza Castro PAT, Codina F, Pinto CG, Vechetti-Junior IJ, Matheus SMM. GaAs laser therapy reestablishes the morphology of the NMJ and nAChRs after injury due to bupivacaine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:256-263. [DOI: 10.1016/j.jphotobiol.2016.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
32
|
Alessi Pissulin CN, Henrique Fernandes AA, Sanchez Orellana AM, Rossi E Silva RC, Michelin Matheus SM. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:30-39. [PMID: 28161653 DOI: 10.1016/j.jphotobiol.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. METHODS In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. RESULTS The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. CONCLUSIONS LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process.
Collapse
Affiliation(s)
- Cristiane Neves Alessi Pissulin
- Department of Anatomy, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil; General Bases of Surgery, Botucatu Medical School, Unesp, Botucatu, SP, Brazil.
| | | | | | | | - Selma Maria Michelin Matheus
- Department of Anatomy, Institute of Bioscience, General Bases of Surgery, Botucatu Medical School, Unesp, Botucatu, SP, Brazil.
| |
Collapse
|
33
|
Souza BBD, Consoli ÉZ, Freire APCF, Oliveira GLFD, Pacagnelli FL, Freitas CEAD. High energy Gallium Arsenide laser does not facilitate collagen alteration in muscle skeletal extracellular matrix: experimental study. FISIOTERAPIA EM MOVIMENTO 2017. [DOI: 10.1590/1980-5918.030.s01.ao29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract Introduction: Low intensity laser therapy has proven effective in treating different tissues, reducing inflammation, preventing the formation of fibrous tissue, and promoting muscle regeneration. Objective: To evaluate the effect of low intensity laser therapy, seven days after the injury, and verify whether the radiated energy chosen influences the formation of fibrous tissue. Methods: Thirty Wistar rats, adult male, average body weight 210-340 g were used. The animals were randomized into three groups: control group, untreated injured group (L), and injured and treated group (LT). After anesthetizing the animals, muscle injury was induced by freezing (cryoinjury) in the central region of the tibialis anterior muscle belly (TA) on the left hind limb, through an iron rod previously immersed in liquid nitrogen. A Gallium Arsenide laser, wavelength 904 nm was used. The applications were initiated 24 hours after injury, daily, for five days, at two points in the lesion area. After 7 days, the animals were euthanized; the TA muscle of the left hind limb was removed and frozen in liquid nitrogen and the obtained histological sections were subjected to Sirius Red staining. Results: Histological analysis showed no significant difference in relation to the area of fibrosis in the LT and L groups. Conclusion: The results suggest that the energy density of 69 J/cm² and final energy (4.8 joules) did not promote alterations in the area of collagen in the skeletal muscle extracellular matrix.
Collapse
|
34
|
Costa Carvalho JL, de Brito AA, de Oliveira APL, de Castro Faria Neto HC, Pereira TM, de Carvalho RA, Anatriello E, Aimbire F. The chemokines secretion and the oxidative stress are targets of low-level laser therapy in allergic lung inflammation. JOURNAL OF BIOPHOTONICS 2016; 9:1208-1221. [PMID: 27649282 DOI: 10.1002/jbio.201600061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/23/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
Recent studies show that low-level laser therapy (LLLT) has an important anti-inflammatory action in acute lung inflammation. The present work explored if laser therapy is able to antagonize eosinophils and allergic inflammation induced by oxidative stress in Balb/c mice. Forty-eight hours after challenge, the leukocyte counting, ROS and nitrite/nitrate level, RANTES, CCL3, CCL8 as well as eotaxins were measured in the bronchoalveolar lavage fluid (BALF) of laser-treated mice or not. Into the lung, some chemokines receptors, the iNOS activity and mRNA expression, and the activities of superoxide dismutase (SOD), catalase, gluthatione, NADPH oxidase activities and thiobarbituric acid reactive species (T-Bars) were measured. Laser-treated allergic mice presented reduction of both the ICAM-1 and eosinophil in the lungs. RANTES, CCL8, CCL3 and eotaxins were reduced in BALF of laser-treated allergic mice. In allergic mice lung LLLT decreased the CCR1 and CCR3 and restored the oxidative stress balance as well. Laser decreased the lipidic peroxidation in allergic mice lung as much as increased SOD, GPx and GR. It shows that LLLT on allergic lung inflammation involves leukocyte-attractant chemokines and endogenous antioxidant. Based on results, LLLT may ultimately become a non- invasive option in allergic lung disease treatment. The top figure illustrates the laser decreasing the eosinophils migration into BALF and the bottom figure shows the laser upregulating the expression of heme-oxygenase (anti-oxidant enzyme) in lung tissue anti-oxidant.
Collapse
Affiliation(s)
- Jorge Luis Costa Carvalho
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, 330 - Vila Nair, PO Box 12231-280, São José dos Campos, São Paulo, SP, Brazil
| | - Auriléia Aparecida de Brito
- Laboratory of Pulmonary and Exercise Immunology-LABPEI, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | | | | | - Thiago Martini Pereira
- Laboratory of Pulmonary and Exercise Immunology-LABPEI, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Regiane Albertini de Carvalho
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, 330 - Vila Nair, PO Box 12231-280, São José dos Campos, São Paulo, SP, Brazil
| | - Elen Anatriello
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, 330 - Vila Nair, PO Box 12231-280, São José dos Campos, São Paulo, SP, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, Rua Talim, 330 - Vila Nair, PO Box 12231-280, São José dos Campos, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind S. Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed Laser Surg 2016; 34:638-645. [DOI: 10.1089/pho.2016.4095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Mira M. Mandelbaum-Livnat
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mara Almog
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Nissan
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Yuval Shapira
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Effect of Dissection and Reconstruction of Palatal Muscles on Morphological Features and Ultrastructure of the Oral Musculature in Cats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6807678. [PMID: 27699171 PMCID: PMC5028850 DOI: 10.1155/2016/6807678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023]
Abstract
The study was designed to determine the effect of dissection and reconstruction of palatal muscles on muscle morphology in cats. 27 cats were randomly divided into three groups according to the extent of muscle dissection from the palatal midline. All dissections were performed from the posterior border of the hard palate, and the muscles were allowed to reconstruct over time. The morphological features were determined by hematoxylin and eosin staining of tissue sections, and ultrastructure was observed under a transmission electron microscope. As a result, no obvious differences were evident in the morphological features or ultrastructure of animals in the <1/3rd and 1/3rd-2/3rd area groups. In the >2/3rd area group, the muscles fibers were disordered and inflammatory cell infiltration and naïve muscle cells were found at one month after surgery. At the second and third month after surgery, the muscle fibers showed regular alignment, the naïve muscle fibers gradually matured, and the number of infiltrating inflammatory cells decreased. Muscle ultrastructure analysis revealed that myocommata were correctly aligned, and the Z line was more distinct. In conclusion, extensive dissection of palatal muscles does not result in fibrosis. Injury to oral musculature can be repaired and the musculature regenerated over time.
Collapse
|
37
|
Ozaki GAT, Camargo RCT, Koike TE, Garcia TA, Castoldi RC, Pereira JDADS, Constantino CJL, Camargo Filho JCS. Analysis of photobiomodulation associated or not with platelet-rich plasma on repair of muscle tissue by Raman spectroscopy. Lasers Med Sci 2016; 31:1891-1898. [PMID: 27649962 DOI: 10.1007/s10103-016-2067-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/05/2016] [Indexed: 01/25/2023]
Abstract
Treatment of muscle injuries usually results in the interruption of sports practice; thus, studies aimed at accelerating the return to activity, with proper tissue repair, are important. Therefore, this study aimed to evaluate the effects of photobiomodulation (PBM), associated or not with platelet-rich plasma (PRP), on the treatment of muscle injury. Thirty-five animals were used and divided into five groups (n = 7): control (C), control lesion (CL), lesion treated with low-level laser therapy (LLLT) (LLt), lesion treated with PRP (LP), and lesion treated with both techniques, LLLT and PRP (LLtP). Muscle injury was induced by stretching the gastrocnemius muscle, and the animals in the LLtP and LP groups received the application of PRP immediately following the injury. The LLLT was applied daily for 7 days. The animals were euthanized 7 days after the injury. Analysis of the NADH/NAD ratio and collagen was performed by Raman spectroscopy; in addition to which, histological analysis of the gastrocnemius muscle was performed. The LLtP group demonstrated a reduction in the area of injury, regenerating cells and a healthy appearance of muscle fibers. The Raman analyses showed a reduction in the NADH/NAD ratio in the CL group, demonstrating oxidative stress, and the collagen presented a reduction in the CL and LLt groups, when compared with the C group. It is concluded that either PBM or PRP, and the association of both, was able to reduce the oxidative stress promoted by injury and modulate collagen production at the site of the injury. Furthermore, although both treatments individually were effective for repairing the damage caused by muscle injury, the association of both demonstrated a better histological aspect.
Collapse
Affiliation(s)
- Guilherme Akio Tamura Ozaki
- Department of Orthopedics and Traumatology, University of Campinas, UNICAMP, Campinas, SP, Brazil. .,, Rua Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.
| | - Regina Celi Trindade Camargo
- Department of Physiotherapy, Faculty of Science and Technology, FCT/UNESP, Presidente Prudente Campus, Presidente Prudente, SP, Brazil
| | - Tatiana Emy Koike
- Department of Physiotherapy, Faculty of Science and Technology, FCT/UNESP, Presidente Prudente Campus, Presidente Prudente, SP, Brazil
| | - Thiago Alves Garcia
- Department of Physiotherapy, Faculty of Science and Technology, FCT/UNESP, Presidente Prudente Campus, Presidente Prudente, SP, Brazil
| | - Robson Chacon Castoldi
- Department of Orthopedics and Traumatology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | - Carlos José Leopoldo Constantino
- Department of Physics, Chemistry and Biology, Faculty of Science and Technology, FCT/UNESP, Presidente Prudente Campus, Presidente Prudente, SP, Brazil
| | - José Carlos Silva Camargo Filho
- Department of Physiotherapy, Faculty of Science and Technology, FCT/UNESP, Presidente Prudente Campus, Presidente Prudente, SP, Brazil
| |
Collapse
|
38
|
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DMJ, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 2016. [PMID: 26984240 DOI: 10.1007/s00520-016-3152-z.low] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
PURPOSE There is a large body of evidence supporting the efficacy of low level laser therapy (LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved, may expand the applications for PBM in the management of other complications associated with HNC treatment. This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of potential applications of PBM in the management of side-effects of (chemo)radiation therapy in patients being treated for HNC and proposes PBM parameters. METHODS This study is a narrative non-systematic review. RESULTS We review PBM mechanisms of action and dosimetric considerations. Virtually, all conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) are thought to be involved in the pathogenesis of (chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical activities ascribed to PBM have also been noted to be similar to those activities and pathways associated with negative tumor behaviors and impeded response to treatment. While there are no anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its neutrality with respect to cancer responsiveness is a critical priority. CONCLUSION Based on its therapeutic effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, and neck complications of HNC treatment. Although evidence suggests that PBM using LLLT is safe in HNC patients, more research is imperative and vigilance remains warranted to detect any potential adverse effects of PBM on cancer treatment outcomes and survival.
Collapse
Affiliation(s)
- Judith A E M Zecha
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Judith E Raber-Durlacher
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Medical Dental Interaction and Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Raj G Nair
- Department of Haematology and Oncology/Cancer Services, Gold Coast University Hospital, Queensland Health, Gold Coast, QLD, Australia
| | - Joel B Epstein
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Otolaryngology and Head and Neck Surgery, City of Hope, Duarte, CA, 91010, USA
| | - Stephen T Sonis
- Division of Oral Medicine, Brigham and Women's Hospital and the Dana-Farber Cancer Institute and Biomodels LLC, Boston, MA, 02115, USA
| | - Sharon Elad
- Division of Oral Medicine, Eastman Institute for Oral Health, and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14620, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, 02139, USA
| | - Andrei Barasch
- Weill Cornell Medical Center, Division of Oncology, New York, NY, USA
| | - Cesar A Migliorati
- Department of Diagnostic Sciences and Oral Medicine, University of Tennessee Health Science Center, College of Dentistry, 875 Union Ave. Suite N231, Memphis, TN, 38163, USA
| | - Dan M J Milstein
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marie-Thérèse Genot
- Laser Therapy Unit, Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles, Brussels, Belgium
| | - Liset Lansaat
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Lisette van der Molen
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene Jacobi
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judi van Diessen
- Antoni van Leeuwenhoek Department Radiation Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ludi E Smeele
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark M Schubert
- Seattle Cancer Care Alliance (SCCA), 825 Eastlake Ave E Ste G6900, Seattle, WA, 98109, USA
| | - René-Jean Bensadoun
- World Association for Laser Therapy (WALT) Scientific Secretary, Centre de Haute Energie (CHE), 10 Bd Pasteur, 06000, Nice, France.
| |
Collapse
|
39
|
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DMJ, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 2016; 24:2781-92. [PMID: 26984240 PMCID: PMC4846477 DOI: 10.1007/s00520-016-3152-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE There is a large body of evidence supporting the efficacy of low level laser therapy (LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved, may expand the applications for PBM in the management of other complications associated with HNC treatment. This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of potential applications of PBM in the management of side-effects of (chemo)radiation therapy in patients being treated for HNC and proposes PBM parameters. METHODS This study is a narrative non-systematic review. RESULTS We review PBM mechanisms of action and dosimetric considerations. Virtually, all conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) are thought to be involved in the pathogenesis of (chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical activities ascribed to PBM have also been noted to be similar to those activities and pathways associated with negative tumor behaviors and impeded response to treatment. While there are no anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its neutrality with respect to cancer responsiveness is a critical priority. CONCLUSION Based on its therapeutic effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, and neck complications of HNC treatment. Although evidence suggests that PBM using LLLT is safe in HNC patients, more research is imperative and vigilance remains warranted to detect any potential adverse effects of PBM on cancer treatment outcomes and survival.
Collapse
Affiliation(s)
- Judith A. E. M. Zecha
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Judith E. Raber-Durlacher
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Dental Interaction and Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Raj G. Nair
- Department of Haematology and Oncology/Cancer Services, Gold Coast University Hospital, Queensland Health, Gold Coast, QLD, Australia
| | - Joel B. Epstein
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Otolaryngology and Head and Neck Surgery, City of Hope, Duarte, CA 91010, USA
| | - Stephen T. Sonis
- Division of Oral Medicine, Brigham and Women’s Hospital and the Dana-Farber Cancer Institute and Biomodels LLC, Boston, MA 02115, USA
| | - Sharon Elad
- Division of Oral Medicine, Eastman Institute for Oral Health, and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA 02139, USA
| | - Andrei Barasch
- Weill Cornell Medical Center, Division of Oncology, New York, NY, USA
| | - Cesar A. Migliorati
- Department of Diagnostic Sciences and Oral Medicine, University of Tennessee Health Science Center, College of Dentistry, 875 Union Ave. Suite N231, Memphis, TN 38163, USA
| | - Dan M. J. Milstein
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marie-Thérèse Genot
- Laser Therapy Unit, Institut Jules Bordet, Centre des Tumeurs de l’Université Libre de Bruxelles, Brussels, Belgium
| | - Liset Lansaat
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Lisette van der Molen
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene Jacobi
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judi van Diessen
- Antoni van Leeuwenhoek Department Radiation Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ludi E. Smeele
- Department of Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Antoni van Leeuwenhoek Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark M. Schubert
- Seattle Cancer Care Alliance (SCCA), 825 Eastlake Ave E Ste G6900, Seattle, WA 98109, USA
| | - René-Jean Bensadoun
- World Association for Laser Therapy (WALT) Scientific Secretary, Centre de Haute Energie (CHE), 10 Bd Pasteur, 06000 Nice, France
| |
Collapse
|
40
|
Silveira PCL, Ferreira KB, da Rocha FR, Pieri BLS, Pedroso GS, De Souza CT, Nesi RT, Pinho RA. Effect of Low-Power Laser (LPL) and Light-Emitting Diode (LED) on Inflammatory Response in Burn Wound Healing. Inflammation 2016; 39:1395-404. [DOI: 10.1007/s10753-016-0371-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Ribeiro BG, Alves AN, dos Santos LAD, Cantero TM, Fernandes KPS, Dias DDS, Bernardes N, De Angelis K, Mesquita-Ferrari RA. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process. PLoS One 2016; 11:e0153618. [PMID: 27082964 PMCID: PMC4833286 DOI: 10.1371/journal.pone.0153618] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. AIM To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. METHODS Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. RESULTS Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. CONCLUSION The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process.
Collapse
Affiliation(s)
| | - Agnelo Neves Alves
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | | | - Nathalia Bernardes
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia De Angelis
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Medicine Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Biophotonics Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
42
|
Adabbo M, Paolillo FR, Bossini PS, Rodrigues NC, Bagnato VS, Parizotto NA. Effects of Low-Level Laser Therapy Applied Before Treadmill Training on Recovery of Injured Skeletal Muscle in Wistar Rats. Photomed Laser Surg 2016; 34:187-93. [PMID: 27058781 DOI: 10.1089/pho.2015.4031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the effects of low-level laser therapy (LLLT) when associated with treadmill training on the recovery of skeletal muscle, during two periods of rest after muscle injury in rats. BACKGROUND DATA Because of photostimulation, LLLT has been presented as an alternative for accelerating the tissue healing process. MATERIALS AND METHODS Forty rats were divided into two groups (A and B) containing four subgroups each: GC (Control Group)-cryolesion untreated; EG (Exercise Group)-cryolesion treated with physical exercise; LG (Laser Group)-cryolesion treated with laser; ELG (Exercise and Laser Group)-cryolesion treated with laser and physical exercise. The right tibialis anterior (TA) of the middle belly was injured by a cooling iron bar (cryoinjury). Group A remained at rest for 3 days, whereas Group B remained at rest for 7 days. The laser parameters utilized were 780 nm with 15 mW average optical power and spot size of 0.04 cm(2) applied during 10 sec, leading to 0.152 J and 3.8 J/cm(2). Treadmill training with and without laser application was performed during 5 days, with each session lasting for 12 min at a velocity of 17 m/min. Subsequently, the TA muscle was removed for a histological and morphometric analysis. RESULTS The damaged area was significantly smaller for the ELG at both periods of rest, 3 and 7 days, respectively (4.4 ± 0.42% and 3.5 ± 0.14%, p < 0.05), when compared with the LG (18.6 ± 0.64% and 7.5 ± 0.13%), the EG (21 ± 0.26% and 8.7 ± 0.32%), and the CG (23.9 ± 0.37% and 21.4 ± 0.38%). In addition, the number of blood vessels were significantly higher for the ELG at both periods of rest, 3 and 7 days, respectively (71.2 ± 13.51 and 104.5 ± 11.78, p < 0.05), when compared with the LG (60.6 ± 11.25 and 93.5 ± 16.87), the EG (51.6 ± 7.3 and 93.8 ± 15.1) and the CG (34.4 ± 2.54 and 65.7 ± 14.1). CONCLUSIONS The LLLT applied before the physical exercise on the treadmill stimulated the angiogenesis and accelerated the process of muscle recovery.
Collapse
Affiliation(s)
- Mayna Adabbo
- 1 Biotechnology Program, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| | - Fernanda Rossi Paolillo
- 2 Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP) , São Carlos, SP, Brazil
| | - Paulo Sérgio Bossini
- 3 Electrothermophototherapy Laboratory, Department of Physical Therapy, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| | - Natalia Camargo Rodrigues
- 4 Department of Biomechanics, Medicine and Rehabilitation of Locomotor System, University of São Paulo (USP) , School of Medicine, Ribeirão Preto, SP, Brazil
| | - Vanderlei Salvador Bagnato
- 2 Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP) , São Carlos, SP, Brazil
| | - Nivaldo Antonio Parizotto
- 3 Electrothermophototherapy Laboratory, Department of Physical Therapy, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| |
Collapse
|
43
|
Silveira PCL, Scheffer DDL, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 2016; 50:503-13. [PMID: 26983894 DOI: 10.3109/10715762.2016.1147649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this work was to investigate the effect of early and long-term low-level laser therapy (LLLT) on oxidative stress and inflammatory biomarkers after acute-traumatic muscle injury in Wistar rats. Animals were randomly divided into the following four groups: control group (CG), muscle injury group (IG), CG + LLLT, and IG + LLLT: laser treatment with doses of 3 and 5 J/cm(2). Muscle traumatic injury was induced by a single-impact blunt trauma in the rat gastrocnemius. Irradiation for 3 or 5 J/cm(2) was initiated 2, 12, and 24 h after muscle trauma induction, and the treatment was continued for five consecutive days. All the oxidant markers investigated. namely thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase, were increased as soon as 2 h after muscle injury and remained increased up to 24 h. These alterations were prevented by LLLT at a 3 J/cm(2) dose given 2 h after the trauma. Similarly, LLLT prevented the trauma-induced proinflammatory state characterized by IL-6 and IL-10. In parallel, trauma-induced reduction in BDNF and VEGF, vascular remodeling and fiber-proliferating markers, was prevented by laser irradiation. In order to test whether the preventive effect of LLLT was also reflected in muscle functionality, we tested the locomotor activity, by measuring distance traveled and the number of rearings in the open field test. LLLT was effective in recovering the normal locomotion, indicating that the irradiation induced biostimulatory effects that accelerated or resolved the acute inflammatory response as well as the oxidant state elicited by the muscle trauma.
Collapse
Affiliation(s)
- Paulo Cesar Lock Silveira
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil ;,b Laboratório de Fisiologia e Bioquímica do Exercício - LaFiBe , Universidade do Extremo Sul Catarinense , Criciúma , Brazil
| | - Debora da Luz Scheffer
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Viviane Glaser
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Aline Pertile Remor
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Ricardo Aurino Pinho
- b Laboratório de Fisiologia e Bioquímica do Exercício - LaFiBe , Universidade do Extremo Sul Catarinense , Criciúma , Brazil
| | - Aderbal Silva Aguiar Junior
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Alexandra Latini
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| |
Collapse
|
44
|
Souza MVD, Silva MOD. LASERTERAPIA EM AFECÇÕES LOCOMOTORAS: REVISÃO SISTEMÁTICA DE ESTUDOS EXPERIMENTAIS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162201144326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Introdução: Ao longo dos anos a fisioterapia tem contribuído para o tratamento das lesões musculotendíneas e osteoarticulares pela utilização de diversos recursos eletrotermofototerapêuticos como, por exemplo, o laser de baixa potência. Objetivo: A finalidade desse estudo foi identificar mediante revisão sistemática, o efeito da laserterapia de baixa potência em afecções do sistema locomotor de ratos, com destaque para a dose de energia e o comprimento de onda utilizado, assim como para a resposta ao tratamento. Métodos: Foram consultadas as bases de dados Medline, Lilacs, PEDro e SciELO, entre janeiro de 2005 a maio de 2013, utilizando os termos "tendinopathy", "laser therapy", "rats", "tendon", "muscle", "bone", "low-level laser therapy", assim como "tendinopatia", "laserterapia", "ratos", "tendão", "músculo", "osso" e "laser de baixa potência". Apenas foram incluídos estudos experimentais publicados nos idiomas português e inglês, que induziram lesão em tendões, músculos, ossos e/ou articulação, tratada com laserterapia, associada ou não a outros tratamentos. Resultados: Foi encontrado um total de 30 estudos experimentais nas bases de dados consultadas, dos quais 15 (50%) foram realizados em tendão, 10 (33,33%) em músculo e cinco (16,66%) em osso e/ou articulação. As doses de energia mais comumente utilizadas foram de 3 J (26,66%) e 1 J (16,66%). Já os comprimentos de onda foram de 904 nm (21,21%) e 830 nm (21,21%). Conclusão: A informação mais expressiva obtida com a terapia foi a diminuição da resposta inflamatória (36,66%) em lesões ortopédicas agudas.
Collapse
|
45
|
Fernandes KPS, Souza NHC, Mesquita-Ferrari RA, Silva DDFTD, Rocha LA, Alves AN, Sousa KDB, Bussadori SK, Hamblin MR, Nunes FD. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:344-51. [PMID: 26519828 DOI: 10.1016/j.jphotobiol.2015.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022]
Abstract
M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions. Photobiomodulation has been used to accelerate tissue repair, but little is known regarding its effect on macrophages. In the present study, J774 macrophages were activated to simulate the M1 profile and irradiated with two different sets of laser parameters (780 nm, 70 mW, 2.6J/cm(2), 1.5s and 660 nm, 15 mW, 7.5 J/cm(2), 20s). IL-6, TNF-α, iNOS and COX-2 gene and protein expression were analyzed by RT-qPCR and ELISA. Both lasers were able to reduce TNF-α and iNOS expression, and TNF-α and COX-2 production, although the parameters used for 780 nm laser provided an additional decrease. 660 nm laser parameters resulted in an up-regulation of IL-6 expression and production. These findings imply a distinct, time-dependent modulation by the two different sets of laser parameters, suggesting that the best modulation may involve more than one combination of parameters.
Collapse
Affiliation(s)
- Kristianne Porta Santos Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil; Department of Oral Pathology, Dental School, Universidade de Sao Paulo, 2227 Professor Lineu Prestes Avenue, Cidade Universitaria, Sao Paulo, SP Zip Code 05508-000, Brazil.
| | - Nadhia Helena Costa Souza
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Daniela de Fatima Teixeira da Silva
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Lilia Alves Rocha
- Department of Oral Pathology, Dental School, Universidade de Sao Paulo, 2227 Professor Lineu Prestes Avenue, Cidade Universitaria, Sao Paulo, SP Zip Code 05508-000, Brazil.
| | - Agnelo Neves Alves
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Kaline de Brito Sousa
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, Sao Paulo, SP Zip Code 01504-001, Brazil.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Fábio Daumas Nunes
- Department of Oral Pathology, Dental School, Universidade de Sao Paulo, 2227 Professor Lineu Prestes Avenue, Cidade Universitaria, Sao Paulo, SP Zip Code 05508-000, Brazil.
| |
Collapse
|
46
|
Bensadoun RJ, Nair RG. Low-Level Laser Therapy in the Management of Mucositis and Dermatitis Induced by Cancer Therapy. Photomed Laser Surg 2015; 33:487-91. [DOI: 10.1089/pho.2015.4022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Raj G. Nair
- Oral Medicine Oral Pathology and Human Diseases, Menzies Health Institute, Queensland, Australia
- Department of Haematology and Oncology, Gold Coast University Hospital Queensland, Gold Coast, Australia
| |
Collapse
|
47
|
Zheng J, Xueqiang W, Wei ML, Lou S, Cheng S, Wu M, Song Y, Hua Y, Liang Z. Low-level laser therapy for neck pain. Hippokratia 2015. [DOI: 10.1002/14651858.cd011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiejiao Zheng
- Huadong Hospital Affiliated with Fudan University; Department of Rehabilitation Medicine; No. 221 West Yan An Road Shanghai China 200040
| | - Wang Xueqiang
- Shanghai University of Sport; Department of Sport Rehabilitation; No. 399 Changhai Road Shanghai China
| | - Mao Ling Wei
- West China Hospital, Sichuan University; Chinese Cochrane Centre, Chinese Evidence-Based Medicine Centre; No. 37, Guo Xue Xiang Chengdu Sichuan China 610041
| | - Shujie Lou
- Shanghai University of Sport; Shanghai China
| | - Shulin Cheng
- University of Jyväskylä; Department of Health Sciences; Jyväskylä Finland
| | - Mark Wu
- Gleneagles International Medical and Surgical Center; Department of Rehabilitation and Ancillary Services; Shanghai China
| | - Yanyan Song
- Shanghai Jiao Tong University; Shanghai China
| | - Yinghui Hua
- Huashan Hospital Affiliated with Fudan University; Department of Sport Medicine; Shanghai China
| | - Zhenwen Liang
- Huadong Hospital Affiliated with Fudan University; Department of Rehabilitation Medicine; No. 221 West Yan An Road Shanghai China 200040
| |
Collapse
|
48
|
Hampshire V. Refining analgesia strategies using lasers. Lab Anim (NY) 2015. [PMID: 26200082 DOI: 10.1038/laban.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sound programs for the humane care and use of animals within research facilities incorporate experimental refinements such as multimodal approaches for pain management. These approaches can include non-traditional strategies along with more established ones. The use of lasers for pain relief is growing in popularity among companion animal veterinary practitioners and technologists. Therefore, its application in the research sector warrants closer consideration.
Collapse
|
49
|
de Freitas CEA, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RAS, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M. High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. Photochem Photobiol 2015; 91:957-65. [DOI: 10.1111/php.12446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/22/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Carlos Eduardo Assumpção de Freitas
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
- Department of Physiotherapy; University of Oeste Paulista (UNOESTE); Presidente Prudente SP Brazil
| | - Raquel Santilone Bertaglia
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Ivan José Vechetti Júnior
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Edson Assunção Mareco
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Rondinelle Artur Simões Salomão
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Tassiana Gutierrez de Paula
- Post Graduate Program in General and Applied Biology; Bioscience Institute; State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Gisele Alborghetti Nai
- Department of Pathology; University of Oeste Paulista (UNOESTE); Presidente Prudente SP Brazil
| | - Robson Francisco Carvalho
- Department of Morphology; Bioscience Institute State University of São Paulo; UNESP; Botucatu SP Brazil
| | - Francis Lopes Pacagnelli
- Department of Physiotherapy; University of Oeste Paulista (UNOESTE); Presidente Prudente SP Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology; Bioscience Institute State University of São Paulo; UNESP; Botucatu SP Brazil
| |
Collapse
|
50
|
Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 2015; 93:1073-85. [PMID: 25122099 DOI: 10.1097/phm.0000000000000158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A review of the literature was performed to demonstrate the most current applicability of low-level laser therapy (LLLT) for the treatment of skeletal muscle injuries, addressing different lasers, irradiation parameters, and treatment results in animal models. Searches were performed in the PubMed/MEDLINE, SCOPUS, and SPIE Digital Library databases for studies published from January 2006 to August 2013 on the use of LLLT for the repair of skeletal muscle in any animal model. All selected articles were critically appraised by two independent raters. Seventeen of the 36 original articles on LLLT and muscle injuries met the inclusion criteria and were critically evaluated. The main effects of LLLT were a reduction in the inflammatory process, the modulation of growth factors and myogenic regulatory factors, and increased angiogenesis. The studies analyzed demonstrate the positive effects of LLLT on the muscle repair process, which are dependent on irradiation and treatment parameters. The findings suggest that LLLT is an excellent therapeutic resource for the treatment of skeletal muscle injuries in the short-term.
Collapse
|