1
|
Photiou C, Cloconi C, Strouthos I. Feature-Based vs. Deep-Learning Fusion Methods for the In Vivo Detection of Radiation Dermatitis Using Optical Coherence Tomography, a Feasibility Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1137-1146. [PMID: 39231883 PMCID: PMC11950469 DOI: 10.1007/s10278-024-01241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Acute radiation dermatitis (ARD) is a common and distressing issue for cancer patients undergoing radiation therapy, leading to significant morbidity. Despite available treatments, ARD remains a distressing issue, necessitating further research to improve prevention and management strategies. Moreover, the lack of biomarkers for early quantitative assessment of ARD impedes progress in this area. This study aims to investigate the detection of ARD using intensity-based and novel features of Optical Coherence Tomography (OCT) images, combined with machine learning. Imaging sessions were conducted twice weekly on twenty-two patients at six neck locations throughout their radiation treatment, with ARD severity graded by an expert oncologist. We compared a traditional feature-based machine learning technique with a deep learning late-fusion approach to classify normal skin vs. ARD using a dataset of 1487 images. The dataset analysis demonstrates that the deep learning approach outperformed traditional machine learning, achieving an accuracy of 88%. These findings offer a promising foundation for future research aimed at developing a quantitative assessment tool to enhance the management of ARD.
Collapse
Affiliation(s)
- Christos Photiou
- Department of Electrical and Computer Engineering, KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus.
| | | | | |
Collapse
|
2
|
Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid TE, Bergmayr A, Etzelstorfer T, Geinitz H. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One 2023; 18:e0281662. [PMID: 36862637 PMCID: PMC9980765 DOI: 10.1371/journal.pone.0281662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory skin reactions and skin alterations are still a potential side effect in radiation therapy (RT), which also need attention for patients' health care. METHOD In a pre-clinical study we consider alterations in irradiated in-vitro skin models of epidermal and dermal layers. Typical dose regimes in radiation therapy are applied for irradiation. For non-invasive imaging and characterization optical coherence tomography (OCT) is used. Histological staining method is additionally applied for comparison and discussion. RESULTS Structural features, such as keratinization, modifications in epidermal cell layer thickness and disorder in the layering-as indications for reactions to ionizing radiation and aging-could be observed by means of OCT and confirmed by histology. We were able to recognize known RT induced changes such as hyper-keratosis, acantholysis, and epidermal hyperplasia as well as disruption and/or demarcation of the dermo-epidermal junction. CONCLUSION The results may pave the way for OCT to be considered as a possible adjunctive tool to detect and monitor early skin inflammation and side effects of radiotherapy, thus supporting patient healthcare in the future.
Collapse
Affiliation(s)
- Luisa Bromberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Bettina Heise
- Institute for Mathematical Methods in Medicine and Data Based Modelling, Johannes Kepler University (JKU), Linz, Austria
- Research Center for Non-Destructive Testing (RECENDT)-GmbH, Linz, Austria
- * E-mail:
| | | | | | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Thomas Ernst Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Alexandra Bergmayr
- Department of Pathology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Tanja Etzelstorfer
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| |
Collapse
|
3
|
Lee J, Jang WH, Shim S, Kim B, Jang WS, Myung JK, Park S, Kim KH. Characterization of early-stage cutaneous radiation injury by using optical coherence tomography angiography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2652-2664. [PMID: 32499950 PMCID: PMC7249837 DOI: 10.1364/boe.387400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 05/09/2023]
Abstract
Cutaneous radiation injury (CRI) is a skin injury caused by exposure to high dose ionizing radiation (IR). Diagnosis and treatment of CRI is difficult due to its initial clinically latent period and the following inflammatory bursts. Early detection of CRI before clinical symptoms will be helpful for effective treatment, and various optical methods have been applied with limitations. Here we show that optical coherence tomography angiography (OCTA) could detect changes in the skin during the latent period in CRI mouse models non-invasively. CRI was induced on the mouse hindlimb with exposure to various IR doses and the injured skin regions were imaged longitudinally by OCTA until the onset of clinical symptoms. OCTA detected several changes in the skin including the skin thickening, the dilation of large blood vessels, and the irregularity in vessel boundaries. Some of OCTA findings were confirmed by histology. The study results showed that OCTA could be used for early CRI detection.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Won Hyuk Jang
- Divison of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sehwan Shim
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Bumju Kim
- Divison of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Won-Suk Jang
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Jae Kyung Myung
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
- Department of Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Sunhoo Park
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
- Department of Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
- Divison of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
4
|
Jang WH, Kwon S, Shim S, Jang WS, Myung JK, Yang S, Park S, Kim KH. Comparison between reflectance confocal microscopy and 2-photon microscopy in early detection of cutaneous radiation injury in a mouse model in vivo. JOURNAL OF BIOPHOTONICS 2018; 11:e201700337. [PMID: 29752868 DOI: 10.1002/jbio.201700337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/11/2018] [Indexed: 05/16/2023]
Abstract
Cutaneous radiation injury (CRI) is a skin injury caused by high-dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and 2-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination.
Collapse
Affiliation(s)
- Won Hyuk Jang
- Divison of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
- Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Soonjae Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sehwan Shim
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
| | - Jae Kyung Myung
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
- Department of Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
| | - Sejung Yang
- Medical Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
- Department of Electronics Engineering, Ewha Womans University, Seoul, South Korea
| | - Sunhoo Park
- National Radiation Emergency Medical Centre, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
- Laboratory of Experimental Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
- Department of Pathology, Korea Cancer Centre Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, South Korea
| | - Ki Hean Kim
- Divison of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| |
Collapse
|