1
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Xu N, Tian H, Po Fung C, Lin Y, Chen Y, Zhu G, Shen Y, Guo C, Yang H. Inhibition of human oral squamous cell carcinoma proliferation and migration by prodrug-activating suicide gene therapies. Exp Ther Med 2023; 25:92. [PMID: 36761002 PMCID: PMC9905654 DOI: 10.3892/etm.2023.11790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates from mucosal epithelium in the oral cavity, pharynx and larynx, is the sixth most common malignancy in the world. The prognosis of HNSCC is not satisfactory due to metastasis, resulting in 5-year survival rates ranging from 65.9 to 67.2%. Previously, we developed a method to evaluate the effect prodrug-activating suicide gene (PA-SG) therapy on the proliferation of HNSCC. The present study investigated PA-SG therapy on metastatic HNSCC by wound-healing assay and our previously established method. HSC-3 cells with stable expression of suicide genes thymidine kinase (TK) or cytosine deaminase (CD) were treated with prodrugs ganciclovir (GCV) or 5-fluorocytosine (5-FC), respectively. Both GCV and 5-FC inhibited HSC-3 proliferation while the bystander effect of CD/5-FC was greater compared with that of TK/GCV. GCV showed a greater anti-migration effect compared with that of 5-FC. To the best of our knowledge, the present study is the first to evaluate the anti-migratory and anti-proliferative effects of PA-SG therapies on metastatic HNSCC. This may also serve as a general method to quantify other types of PA-SC therapy. The present results demonstrated that PA-SG therapy is a promising treatment for anti-metastatic HNSCC therapy development.
Collapse
Affiliation(s)
- Naining Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518001, P.R. China
| | - Honglei Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, P.R. China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, P.R. China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518001, P.R. China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518001, P.R. China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, P.R. China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518001, P.R. China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518001, P.R. China
| |
Collapse
|
4
|
Zhang Y, Chen S, Xia Q, Zhang H, Wang Z, Yan R, Zhang X, Dai J, Wu X, Fang W, Jin Y. Photodynamic antitumor activity of tetrahydroxyl-methyl pyropheophorbide-a with improved water-solubility and depth of treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Yu H, Zhang Y, Zuo Q, Zhong S, Chen Y, Zhang M, Zhan F, Ou Y. Targeting X box-binding protein-1 (XBP1) enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbide- α methyl ester-mediated photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102646. [PMID: 34818599 DOI: 10.1016/j.pdpdt.2021.102646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT), utilizes a photochemical reaction between photosensitizer and light to cause cancer death by generating reactive oxygen species (ROS). X-box binding protein 1 (XBP1), a downstream product of the IRE1α-XBP1 pathway, regulates diverse target genes, including various proto-oncogenes and its overexpression was closely related to the occurrence and progression of malignant tumors. The present study was performed to explore the role of XBP1 in human osteosarcoma HOS cells treated with pyropheophorbide-α methyl ester (MPPα)-mediated photodynamic therapy (PDT) (MPPα-PDT) and its potential mechanisms. The protein IRE1α and XBP1 increased with a time-dependent manner after MPPα-PDT treated, which indicated that MPPα-PDT induced the activation of the IRE1α-XBP1 pathway in HOS cells. Besides, MPPα-PDT treated alone or combined with XBP1 knockdown could both restrain the cell viability, but the latter one has more notable effect, which indicated that XBP1 knockdown may enhance the cell inhibitory effect by MPPα-PDT. Simultaneously, the apoptotic rate measured by flow cytometry (FCM) was increased surprisedly and the expression of apoptosis proteins was increased when knockdown XBP1 under the MPPα-PDT. In addition, antioxidant-related proteins such as the Catalase and SOD1 protein levels decreased, while the intracellular ROS content increased in HOS cells when knockdown XBP1 under the MPPα-PDT. These results suggested that the mechanism of XBP1 mediating resistance in HOS cells might be related to the expression of antioxidant molecules. In summary, this study found that the IRE1α-XBP1 pathway was activated in HOS cells after MPPα-PDT treated, and furthermore, XBP1 knockdown could decrease HOS cell viability through apoptosis and enhance the anti-tumor effect of MPPα-PDT remarkably in the meantime, which related to the regulation of oxidation-antioxidant system.
Collapse
Affiliation(s)
- Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yanyang Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Fangbiao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Chien YC, Chou YH, Wang WH, Chen JCH, Chang WS, Tsai CW, Bau DAT, Hwang JJ. Therapeutic Efficacy Evaluation of Pegylated Liposome Encapsulated With Vinorelbine Plus 111In Repeated Treatments in Human Colorectal Carcinoma With Multimodalities of Molecular Imaging. Cancer Genomics Proteomics 2020; 17:61-76. [PMID: 31882552 DOI: 10.21873/cgp.20168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM In precision therapy, liposomal encapsulated chemotherapeutic drugs have been developed to treat cancers by achieving higher drug accumulation in the tumor compared to normal tissues/organs. MATERIALS AND METHODS We developed a novel chemoradiotherapeutic approach via nanoliposomes conjugated with vinorelbine (VNB) and 111In (111In-VNB-liposome) and examined their pharmacokinetics, biodistribution, maximum tolerance dose, and toxicity in a NOD/SCID mouse model. RESULTS Pharmacokinetic results showed that the area under the curve (AUC) of PEGylated liposomes was about 17-fold higher than that of the free radioisotope. Tumor growth inhibition by 111In-VNB-liposome was significantly higher than that of the control (p<0.05). CONCLUSION The tumors in NOD/SCID mice bearing HT-29/tk-luc xenografts were significantly suppressed by 111In-VNB-liposomes. The study proposed repeated treatments with a novel liposome-mediated radiochemotherapy and validation of therapeutic efficacy via imaging.
Collapse
Affiliation(s)
- Yi-Chun Chien
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Jiaosu Village, Kaohsiung, Taiwan, R.O.C.,School of Medicine, I-Shou University, Jiaosu Village, Kaohsiung, Taiwan, R.O.C
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan, R.O.C
| | - John Chun-Hao Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Jeng-Jong Hwang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C. .,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
8
|
Xing Y, Cai Y, Cheng J, Xu X. Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01389-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Li JY, Huang WX, Chen J, Zhao SP, Tang YY. Targeted Inhibitory Effect of Nasopharyngeal Carcinoma Cells by Hre 2.Grp78 Chimeric Promoter Regulating Fusion Gene TK/VP3. Technol Cancer Res Treat 2019; 18:1533033819875166. [PMID: 31769345 PMCID: PMC6880038 DOI: 10.1177/1533033819875166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective: To construct plasmids with Hre2.Grp78 chimeric promoter regulating fusion
gene TK/VP3 and elaborate the effects of overexpressed
TK/VP3 on nasopharyngeal carcinoma cells. Methods: Four plasmids were constructed, including pcDNA3.1-CMV-TK/VP3,
pcDNA3.1-Hre2.TK/VP3, pcDNA3.1-Grp78.TK/VP3, and
pcDNA3.1-Hre2.Grp78.TK/VP3. The human nasopharyngeal carcinoma cell line HNE1
cells were transfected with the 4 plasmids, respectively. Cell viabilities were
evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, and apoptosis was conducted using flow cytometry analysis. The expression of TK,
VP3, Grp78, and hypoxia-inducible factor 1α and apoptosis-related proteins was
determined by real-time quantitative polymerase chain reaction and Western blotting. Results: The recombinant plasmids that could steadily overexpress TK and VP3 were successfully
constructed. Expression of TK and VP3 in cells transfected with
pcDNA3.1-Hre2.TK/VP3 and pcDNA3.1-Grp78.TK/VP3 was significantly higher than
pcDNA3.1-CMV-TK/VP3, and expression in cells transfected with
pcDNA3.1-Hre2.Grp78.TK/VP3 was the highest. Under glucose deprivation or
hypoxia condition, Grp78 or hypoxia-inducible factor 1α was overexpressed so that
expression of TK and VP3 was significantly upregulated, which could further inhibit cell
proliferation and enhance cell apoptosis. Conclusion: We successfully constructed 4 plasmids with Hre2.Grp78 chimeric promoter
regulating fusion gene TK/VP3, which could significantly inhibit the
proliferation as well as enhance the apoptosis of nasopharyngeal carcinoma cells under
glucose deprivation or hypoxia condition.
Collapse
Affiliation(s)
- Jin-Yun Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Xiao Huang
- Xiangya Hospital, Central South University, Changsha, China
| | - Jie Chen
- Xiangya Hospital, Central South University, Changsha, China
| | - Su-Ping Zhao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yao-Yun Tang
- Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
11
|
Carrier-free core–shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. J Colloid Interface Sci 2019; 535:84-91. [DOI: 10.1016/j.jcis.2018.09.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023]
|
12
|
Zolottsev VA, Ponomarev GV, Taratynova MO, Morozevich GE, Novikov RA, Timofeev VP, Solyev PN, Zavialova MG, Zazulina OV, Tkachev YV, Misharin AY. Conjugates of 17-substituted testosterone and epitestosterone with pyropheophorbide a differing in the length of linkers. Steroids 2018; 138:82-90. [PMID: 30033342 DOI: 10.1016/j.steroids.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Conjugates of 17α-substituted testosterone (1 and 2) and 17β-substituted epitestosterone (3 and 4) with pyropheophorbide a were synthesized. The scheme consisted of synthesis of 17α-hydroxy-3-oxopregn-4-en-21-oic and 17β-hydroxy-3-oxopregn-4-en-21-oic acids, and their coupling with pyropheophorbide a by means of either ethylene diamine, or 1,5-diamino pentane linkers. Mutual influence of steroidal and macrocyclic fragments in conjugates molecules was dependent on configuration of C17 and length of linker, that was established by analysis of 1H NMR spectra and molecular models of conjugates. Studies of interaction of conjugates with prostate carcinoma cells revealed that their uptake and internalization were independent on the androgen receptor activity, but dependent on the structure of conjugates, decreasing in the following row: 3 > 4 ≥ 1 > 2. Conjugates significantly decreased the LNCaP and PC-3 cells growth at 96 h incubation. Epitestosterone derivatives 3 and 4 also showed superior anti-proliferative activity versus testosterone ones. Conformationally more rigid conjugates 1 and 3, comprising short linkers, were more active than those with long linkers; conjugate 3 was the most potent.
Collapse
Affiliation(s)
| | | | | | | | - Roman A Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Olga V Zazulina
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|