1
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Kim BR, Kim M, Na JI, Huh CH, Shin JW. A Randomized Split-Face Study of Photodynamic Therapy With St. John's Wort and Indole-3-Acetic Acid for the Treatment of Acne. Dermatol Surg 2023; 49:483-488. [PMID: 36946749 DOI: 10.1097/dss.0000000000003742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND St. John's wort (SJW) contains hypericin, a powerful photosensitizer with antimicrobial and anti-inflammatory activities. OBJECTIVE To compare the efficacy and safety of SJW-photodynamic therapy (PDT) with that of indole-3-acetic acid (IAA)-PDT for the treatment of acne and investigate the skin rejuvenating effects of SJW-PDT. MATERIALS AND METHODS In vitro experiments were conducted to examine the generation of reactive oxygen species and the antimicrobial effects of SJW-PDT. In the prospective, double-blind, split-face, randomized study, 31 patients with facial acne were treated with SJW or IAA with simultaneous illumination of red light and green light. RESULTS SJW produces free radicals with visible light irradiation, and the growth of Cutibacterium acnes and Staphylococcus aureus is significantly suppressed. One week after the last treatment, the acne lesion counts were significantly decreased in both groups (56.5% reduction in SJW, p < .001 vs 57.0% in IAA, p < .001). Significant reductions in sebum secretion, erythema index, roughness, and wrinkles were observed in both groups after the treatment. No side effects were observed. CONCLUSION SJW-PDT is a simple, safe, and effective treatment option for acne that is also beneficial for skin rejuvenation.
Collapse
Affiliation(s)
- Bo Ri Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Minjae Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
4
|
Choudhary N, Collignon TE, Tewari D, Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154356. [PMID: 35985181 DOI: 10.1016/j.phymed.2022.154356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies indicate that hypericin has diverse pharmacological actions and exhibits potential for treatment of various types of cancer. PURPOSE The current review evaluates the pharmacological activity, associated molecular mechanism, and therapeutic application of hypericin as an anticancer agent according to the most recent state of knowledge with special emphasis on clinical trials and safety profile. METHOD This review follows The Preferred Reporting Items for Systematic Reviews criteria. Various databases, including PubMed, Scopus and Science Direct, were used to search and collect relevant literature. The major keywords used included the following: cancer, distribution, property, signaling pathway, pharmacological effect, treatment, prevention, in vitro and in vivo studies, toxicity, bioavailability, and clinical trials. RESULTS One hundred three articles met the established inclusion and exclusion criteria. Hypericin has shown anticancer activity against the expansion of several cell types including breast cancer, cervical cancer, colorectal cancer, colon cancer, hepatocellular carcinoma, stomach carcinoma, leukemia, lung cancer, melanoma, and glioblastoma cancer. Hypericin exerts its anticancer activity by inhibiting pro-inflammatory mediators, endothelial growth factor, fibroblast growth factor, cell adhesion, angiogenesis, and mitochondrial thioredoxin. It has also been shown to cause an increase in the levels of caspase-3 and caspase-4, arrest the cell cycle at metaphase leading to cancer cell apoptosis, and affect various protein and gene expression patterns. CONCLUSION Hypericin exhibits significant inhibitory activity against various types of in vitro and in vivo cancer models. However, well-designed, high quality, large-scale and multi-center randomized clinical studies are required to establish the safety and clinical utility of hypericin in cancer patients.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab 151101, India
| | - Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020; 8:559159. [PMID: 33363102 PMCID: PMC7758496 DOI: 10.3389/fchem.2020.559159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.
Collapse
Affiliation(s)
- Xuejun Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mulan Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Hong Kong, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Tian C, Liu L, Xia M, Chu XQ. The Evaluations of Menthol and Propylene Glycol on the Transdermal Delivery System of Dual Drug-Loaded Lyotropic Liquid Crystalline Gels. AAPS PharmSciTech 2020; 21:224. [PMID: 32749554 DOI: 10.1208/s12249-020-01762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effects of two different structural alcohol permeation enhancers (menthol and propylene glycol) on the internal structure and in vitro properties of the dual drug-loaded lyotropic liquid crystalline (LLC) gels. The LLC gels were prepared and characterized by polarized light microscopy, small-angle X-ray scattering, differential scanning calorimetry, attenuated total reflectance-Fourier transform infrared spectrum, and rheology. Based on the results, the inner structure of the gels was QII mesophase and exhibited a pseudoplastic fluid behavior. The level of internal order in the LLC mesophase would be affected by introduced 2 wt% menthol (MEN) and propylene glycol (PG). The in vitro release experiment showed that the release behavior of sinomenine hydrochloride (SH) and cinnamaldehyde (CA) from the LLC system was dominated by Fickian diffusion (n < 0.43). MEN and PG had the opposite effects on the release of hydrophilic SH, while the MEN and PG both increased the release of lipophilic drug CA. Furthermore, in vitro permeation studies indicated that MEN and PG could both improve the skin permeability of SH and CA, and MEN displayed more pronounced enhancement. All the samples showed no skin irritation on the normal rat skin. Collectively, in our research, monoterpenoid MEN exhibited a better penetration-promoting effect than straight-chain fatty alcohol PG on the dual drug-loaded LLC system.
Collapse
|