1
|
Trajano LADSN, Siqueira PB, Pinheiro D, Farias TG, Santos MSD, Pires BRB, Fonseca ADSD, Mencalha AL. Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells. Lasers Med Sci 2025; 40:38. [PMID: 39849271 DOI: 10.1007/s10103-025-04287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025]
Abstract
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA). No significant difference was observed in the mtDNA/gDNA ratio comparing the low-power infrared laser (LPIL) and LED-irradiated groups to their control counterparts. Similarly, no difference was observed in the mRNA levels of PINK1 and PGC-1α of the irradiated group with an LPIL and LED alone or in combination. In conclusion, PBM with LPIL and LED did not alter the mtDNA/gDNA ratio nor modulate the mRNA levels of the genes related to mitophagy and biogenesis in BC cells.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil.
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Daphne Pinheiro
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Thayssa Gomes Farias
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Márcia Soares Dos Santos
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, niversidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, 20211040, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| |
Collapse
|
2
|
Lauxen AC, Machado DR, Pereira DS, de Medeiros LB, Bertoncello D, Buzanello MR, Bertolini GRF. Photobiomodulation in carpal tunnel syndrome with pain, strength, and functionality analysis: a systematic review and meta-analysis. Lasers Med Sci 2025; 40:12. [PMID: 39776290 DOI: 10.1007/s10103-024-04276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Carpal tunnel syndrome (CTS) is characterized as a compressive neuropathy of the median nerve and has several treatments, including photobiomodulation, which can be performed with low-intensity laser therapy (LLLT) and light-emitting diodes (LEDs). PURPOSE To carry out a literature review on the effectiveness of low-intensity laser therapy (LLLT) in CTS. METHODS This study is characterized by being a systematic review with metaanalysis. The databases included were PubMed, Embase, Cochrane, the Physiotherapy Evidence Database (PEDro), Scopus and LILACS. Also, gray literature: Google Scholar, OpenGrey and CAPES Theses and Dissertations Catalog. The search was carried out in all databases on October 11, 2023 and updated on June 06, 2024. The risk of bias was assessed using the Cochrane tool, RoB 2, by two blinded reviewers and conflicts were resolved by consensus. The outcomes of interest were pain intensity (Visual analogue scale), strength (handgrip and pinch) and hand functionality (Boston questionnaire, Levine questionnaire, Purdue Pergboard Test). Statistical analysis was carried out using RevMan 5.4.1. Continuous results were expressed as standard mean differences (95% CI), with p-value of < 0.05 considered statistically significant. The value of the I2 statistical test was calculated to test for heterogeneity between studies. A random effects model was adopted. RESULTS 13 randomized controlled trials were selected from 1.613 records. In the general bias analysis, two studies (15,4%) were considered to have some relevant problems that could interfere with the quality of the study, and three (23,1%) were identified as having a high risk of bias, eight studies (61,5%) were classified as having a low risk of bias. In the meta-analysis, it was possible to observe that there were no advantages of the laser for pain (p = 0.08), nor for handgrip strength (p = 0.11), but it did produce improvements in functionality. CONCLUSION It is concluded that LLLT is an effective therapeutic modality in the treatment of CTS, improving functionality; however, despite the studies pointing to advantages for the modality in reducing pain and improving grip strength, the meta-analysis did not show this result. Even so, there is a need for more clinical trials are needed to standardize dosimetry, mainly because the primary studies showed clinical advantages of PBM. REGISTRATION Open Science Framework (OSF)- https://doi.org/10.17605/OSF.IO/HQCRP .
Collapse
Affiliation(s)
- Ana Cristhini Lauxen
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
| | - Debora Regina Machado
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
| | - Debora Stefhani Pereira
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
| | - Larissa Beatriz de Medeiros
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
| | - Dernival Bertoncello
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
- Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Márcia Rosângela Buzanello
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil
| | - Gladson Ricardo Flor Bertolini
- Universidade Estadual do Oeste do Paraná - Unioeste, Campus Cascavel, Universitaria St. 2069, CascavelParaná, 85819-110, Brazil.
| |
Collapse
|
3
|
Malavazzi TCDS, Andreo L, Martinelli A, Rodrigues MFSD, Horliana ACRT, Bussadori SK, Fernandes KPS, Nunes FD, Mesquita-Ferrari RA. Preventive and therapeutic vascular photobiomodulation decreases the inflammatory markers and enhances the muscle repair process in an animal model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112921. [PMID: 38714002 DOI: 10.1016/j.jphotobiol.2024.112921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Photobiomodulation therapy (PBM) has shown positive effects when applied locally to modulate the inflammatory process and facilitate muscle repair. However, the available literature on the mechanisms of action of vascular photobiomodulation (VPBM), a non-invasive method of vascular irradiation, specifically in the context of local muscle repair, is limited. Thus, this study aimed to assess the impact of vascular photobiomodulation (VPBM) using a low-level laser (LLL) on the inflammatory response and the process of skeletal muscle repair whether administered prior to or following cryoinjury-induced acute muscle damage in the tibialis anterior (TA) muscles. Wistar rats (n = 85) were organized into the following experimental groups: (1) Control (n = 5); (2) Non-Injury + VPBM (n = 20); (3) Injured (n = 20); (4) Pre-VPBM + Injury (n = 20); (5) Injury + Post-VPBM (n = 20). VPBM was administered over the vein/artery at the base of the animals' tails (wavelength: 780 nm; power: 40 mW; application area: 0.04 cm2; energy density: 80 J/cm2). Euthanasia of the animals was carried out at 1, 2, 5, and 7 days after inducing the injuries. Tibialis anterior (TA) muscles were collected for both qualitative and quantitative histological analysis using H&E staining and for assessing protein expression of TNF-α, MCP-1, IL-1β, and IL-6 via ELISA. Blood samples were collected and analyzed using an automatic hematological analyzer and a leukocyte differential counter. Data were subjected to statistical analysis (ANOVA/Tukey). The results revealed that applying VPBM prior to injury led to an increase in circulating neutrophils (granulocytes) after 1 day and a subsequent increase in monocytes after 2 and 5 days, compared to the Non-Injury + VPBM and Injured groups. Notably, an increase in erythrocytes and hemoglobin concentration was observed in the Non-Injury + VPBM group on days 1 and 2 in comparison to the Injured group. In terms of histological aspects, only the Prior VPBM + Injured group exhibited a reduction in the number of inflammatory cells after 1, 5, and 7 days, along with an increase in blood vessels at 5 days. Both the Prior VPBM + Injured and Injured + VPBM after groups displayed a decrease in myonecrosis at 1, 2, and 7 days, an increase in newly-formed and immature fibers after 5 and 7 days, and neovascularization after 1, 2, and 7 days. Regarding protein expression, there was an increase in MCP-1 after 1 and 5 days, TNF-α, IL-6, and IL-1β after 1, 2, and 5 days in the Injured + VPBM after group when compared to the other experimental groups. The Prior VPBM + Injured group exhibited increased MCP-1 production after 2 days, in comparison to the Non-Injury + VPBM and Control groups. Notably, on day 7, the Injured group continued to show elevated MCP-1 protein expression when compared to the VPBM groups. In conclusion, VPBM effectively modulated hematological parameters, circulating leukocytes, the protein expression of the chemokine MCP-1, and the proinflammatory cytokines TNF-α and IL-1β, ultimately influencing the inflammatory process. This modulation resulted in a reduction of myonecrosis, restoration of tissue architecture, increased formation of newly and immature muscle fibers, and enhanced neovascularization, with more pronounced effects when VPBM was applied prior to the muscle injury.
Collapse
Affiliation(s)
- Tainá Caroline Dos Santos Malavazzi
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Lucas Andreo
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Andreia Martinelli
- Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo (FOUSP), Sao Paulo, SP 05508-000, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil.
| |
Collapse
|
4
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
5
|
da Silva Neto Trajano LA, da Silva Sergio LP, de Oliveira DSL, Trajano ETL, Dos Santos Silva MA, de Paoli F, Mencalha AL, da Fonseca ADS. Low-power infrared laser modulates mRNA levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury. Photochem Photobiol Sci 2022; 21:1299-1308. [PMID: 35426610 DOI: 10.1007/s43630-022-00221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury by sepsis. For experimental procedure, animals were randomly assigned to six main groups: (1) control group was animals treated with intraperitoneal saline solution; (2) LASER-10 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 10 J cm-2; (3) LASER-20 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 20 J cm-2; (4) acute lung injury (ALI) was animals treated with intraperitoneal LPS (10 mg kg-1); (5) ALI-LASER10 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 10 J cm-2 and (6) ALI-LASER20 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 20 J cm-2. Irradiation was performed only once and animal euthanasias for analysis of mRNA relative levels by RT-qPCR. Our results showed that there was a reduction of mRNA relative levels from ATM gene and an increase of mRNA relative levels from P53 gene in the heart of animals with ALI when compared to the control group. In addition, there was an increase of mRNA relative levels from OGG1 and APE1 gene in hearts from animals with ALI when compared to the control group. After irradiation, an increase of mRNA relative levels from ATM and OGG1 gene was observed at 20 J cm-2. In conclusion, low-power laser modulates the mRNA relative levels from genes of base excision repair and genomic stabilization in the experimental model of acute lung injury evaluated.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Mestrado Profissional em Diagnóstico em Medicina Veterinária, Pró Reitoria de Pesquisa e Pós Graduação, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil. .,Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil. .,Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil.
| | - Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Diego Sá Leal de Oliveira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Eduardo Tavares Lima Trajano
- Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil
| | - Marco Aurélio Dos Santos Silva
- Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil
| | - Flávia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer-s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| | - André Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.,Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
6
|
Low-power therapeutic lasers on mRNA levels. Lasers Med Sci 2022; 37:2353-2362. [PMID: 35288806 DOI: 10.1007/s10103-022-03541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Gene expression evaluation in cells and biological tissues has been crucial for research in biology, medicine, biotechnology, and diagnostic. Messenger ribonucleic acid (mRNA) levels show relationship with gene expression, and they can be measured by real-time quantitative polymerase chain reaction (RT-qPCR) for the quantification of steady-state mRNA levels in cells and biological tissues. Radiations emitted from low-power lasers induce photobiomodulation, which is the base of therapeutic protocols for disease treatment. Despite that the understanding on photobiomodulation has been improved by mRNA level evaluation, laser irradiation parameters and procedures are diversified among studies, harming the comparison of RT-qPCR data. In this systematic review, data from mRNA levels reported in photobiomodulation studies were summarized regarding the process, function, and gene. Literature search was conducted for the assessment of published reports on mRNA levels evaluated by RT-qPCR in cells and biological tissues exposed to low-power lasers. Data showed that mRNA levels have been evaluated by RT-qPCR for a variety of genes related to molecular, cellular, and systemic processes after low-power violet-orange, red, and infrared laser exposure. Results from gene expression have increased the understanding of the mechanisms involved in photobiomodulation, and they can be useful to increase the efficacy and safety of clinical applications based on low-power lasers.
Collapse
|
7
|
Ailioaie LM, Litscher G. Photobiomodulation and Sports: Results of a Narrative Review. Life (Basel) 2021; 11:1339. [PMID: 34947870 PMCID: PMC8706093 DOI: 10.3390/life11121339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Benefits of photobiomodulation (PBM) have been known for several decades. More recently, PBM applied in sports offers a special chance to support the modeling of the performance and recovery. Increasingly complex physical activities and fierce competition in the world of sports generate a state of psycho-emotional and physical stress that can induce chronic fatigue syndrome, failure in physical training, predisposition to muscle damage, physical and emotional exhaustion etc., for which PBM could be an excellent solution. To evaluate and identify all risk factors and the influence of PBM on health and performance in sport and for a better understanding of its effects, we did a search for "Photobiomodulation and Sports" on PubMed, to update the PBM science applied in sports, and we retained for analysis the articles published from 2014 to date. The term "PBM" is recent, and we did not include previous studies with "low level laser therapy" or "LLLT" before 2014. In the present research, PBM has been shown to have valuable protective and ergogenic effects in 25 human studies, being the key to success for high performance and recovery, facts supported also by 22 animal studies. PBM applied creatively and targeted depending on sport and size of the level of physical effort could perfectly modulate the mitochondrial activity and thus lead to remarkable improvements in performance. PBM with no conclusive results or without effects from this review (14 studies from a total of 39 on humans) was analyzed and we found the motivations of the authors from the perspective of multiple causes related to technological limitations, participants, the protocols for physical activity, the devices, techniques and PBM parameters. In the near future, dose-response experiments on physical activity should be designed and correlated with PBM dose-response studies, so that quantification of PBM parameters to allow the energy, metabolic, immune, and neuro-endocrine modulation, perfectly coupled with the level of training. There is an urgent need to continuously improve PBM devices, delivery methods, and protocols in new ingenious future sports trials. Latest innovations and nanotechnologies applied to perform intracellular signaling analysis, while examining extracellular targets, coupled with 3D and 4D sports motion analysis and other high-tech devices, can be a challenge to learn how to maximize PBM efficiency while achieving unprecedented sports performance and thus fulfilling the dream of millions of elite athletes.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
8
|
Low-power infrared laser modulates telomere length in heart tissue from an experimental model of acute lung injury. Photochem Photobiol Sci 2021; 20:653-661. [PMID: 34009632 PMCID: PMC8131880 DOI: 10.1007/s43630-021-00051-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
Acute lung injury and acute respiratory distress syndrome can occur as a result of sepsis. Cardiac dysfunction is a serious component of multi-organ failure caused by severe sepsis. Telomere shortening is related to several heart diseases. Telomeres are associated with the shelterin protein complex, which contributes to the maintenance of telomere length. Low-power infrared lasers modulate mRNA levels of shelterin complex genes. This study aimed to evaluate effects of a low-power infrared laser on mRNA relative levels of genes involved in telomere stabilization and telomere length in heart tissue of an experimental model of acute lung injury caused by sepsis. Animals were divided into six groups, treated with intraperitoneal saline solution, saline solution and exposed to a low-power infrared laser at 10 J cm−2 and 20 J cm−2, lipopolysaccharide (LPS), and LPS and, after 4 h, exposed to a low-power infrared laser at 10 J cm−2 and 20 J cm−2. The laser exposure was performed only once. Analysis of mRNA relative levels and telomere length by RT-qPCR was performed. Telomere shortening and reduction in mRNA relative levels of TRF1 mRNA in heart tissues of LPS-induced ALI animals were observed. In addition, laser exposure increased the telomere length at 10 J cm−2 and modulated the TRF1 mRNA relative levels of at 20 J cm−2 in healthy animals. Although the telomeres were shortened and mRNA levels of TRF1 gene were increased in nontreated controls, the low-power infrared laser irradiation increased the telomere length at 10 J cm−2 in cardiac tissue of animals affected by LPS-induced acute lung injury, which suggests that telomere maintenance is a part of the photobiomodulation effect induced by infrared radiation.
Collapse
|
9
|
585 nm light-emitting diodes inhibit melanogenesis through upregulating H19/miR-675 axis in LEDs-irradiated keratinocytes by paracrine effect. J Dermatol Sci 2020; 98:102-108. [PMID: 32278532 DOI: 10.1016/j.jdermsci.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND 585 nm light-emitting diodes have been proven to suppress melanogenesis in melanocytes. However, whether LEDs will influence normal human epidermal keratinocytes (NHEKs) and paracrine effect of LEDs-irradiated NHEKs in melanogenesis remains unknown. OBJECTIVE To elucidate the possible mechanisms in vitro of anti-melanogenic activity of 585 nm LEDs on paracrine effect of NHEKs and its exosomes. METHODS NHEKs irradiated with different fluences of 585 nm LEDs were evaluated the cell viability by CCK8 assay. Irradiated medium of NHEKs was co-cultured with melanocytes. Melanin content, tyrosinase activity and melanogenic enzymes activities were detected. Exosomes from NHEKs medium were isolated and characterized by electron microscopy and nanoparticle tracking analysis. The expression changes of H19 and its encoded exosomal miR-675 were analyzed. RESULTS Irradiation with 585 nm LEDs from 0 J/cm2 to 20 J/cm2 had no cytotoxic effect on NHEKs. After co-cultured with irradiated medium of NHEKs, melanin content and tyrosinase activity were reduced and the melanogenic activities were downregulated on both mRNA and protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1). H19 and its derived exosomal miR-675 from NHEKs, which has been proven relevant to melanogenesis, were significantly upregulated after irradiation. Furthermore, H19 knockdown and miR-675 inhibition in NHEKs could attenuate the inhibition effect of 585 nm LEDs on melanogenesis. CONCLUSIONS This study demonstrated that 585 nm LEDs could inhibit melanogenesis via the up-regulation of H19 and its derived exosomal miR-675 from NHEKs, which was considered as a novel paracrine factor in regulating melanogenesis.
Collapse
|
10
|
da Silva Sergio LP, Mencalha AL, de Souza da Fonseca A, de Paoli F. DNA repair and genomic stability in lungs affected by acute injury. Biomed Pharmacother 2019; 119:109412. [PMID: 31514069 PMCID: PMC9170240 DOI: 10.1016/j.biopha.2019.109412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Acute pulmonary injury, or acute respiratory distress syndrome, has a high incidence in elderly individuals and high mortality in its most severe degree, becoming a challenge to public health due to pathophysiological complications and increased economic burden. Acute pulmonary injury can develop from sepsis, septic shock, and pancreatitis causing reduction of alveolar airspace due to hyperinflammatory response. Oxidative stress acts directly on the maintenance of inflammation, resulting in tissue injury, as well as inducing DNA damages. Once the DNA is damaged, enzymatic DNA repair mechanisms act on lesions in order to maintain genomic stability and, consequently, contribute to cell viability and homeostasis. Although palliative treatment based on mechanical ventilation and antibiotic using have a kind of efficacy, therapies based on modulation of DNA repair and genomic stability could be effective for improving repair and recovery of lung tissue in patients with acute pulmonary injury.
Collapse
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|