1
|
Negri LB, Korupolu S, Farinelli W, Jolly AK, Redmond RW, Aggarwal S, Rahme LG, Gilchrist KH, Anderson RR, Gelfand JA. Antimicrobial Blue Light Reduces Human-Wound Pathogens' Resistance to Tetracycline-Class Antibiotics in Biofilms. Cells 2025; 14:219. [PMID: 39937010 PMCID: PMC11817061 DOI: 10.3390/cells14030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Biofilms contribute to chronic infections and the development of antimicrobial resistance (AMR). We are developing an antimicrobial blue light (aBL) device to reduce bacterial bioburden in wounds and decrease reliance on systemic antibiotics. aBL induces the generation of reactive oxygen species (ROS) through photoexcitation of endogenous chromophores, causing bacterial damage and death. This study explores the combination of tetracyclines (TCs) with aBL for the treatment of biofilm infections in vitro. Tetracyclines (TCs), including second-generation minocycline (MC), doxycycline (DOCT), and third-generation agents omadacycline (OM) and tigecycline (TG), were evaluated for their ability to enhance bactericidal effects and ROS production during aBL treatment of abiotic biofilm. TCs were tested under dark conditions and with varying aBL light parameters against biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa (PA), and Escherichia coli (E. coli). Results showed that TCs alone were ineffective against these biofilm cultures. However, when combined with aBL either before or after TC treatment, significant enhancement of microbicidal activity was observed. When the aBL is added before the TCs, there was equivalent bactericidal effect, indicating that TCs primary action against biofilms were not as photosensitizers. These findings suggest that aBL can significantly enhance the antimicrobial activity of TCs, potentially offering a new effective approach to treating biofilm-associated infections and combating AMR when aBL is applicable.
Collapse
Affiliation(s)
- Laisa Bonafim Negri
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Vaccine & Immunotherapy Center, Division of Infectious Diseases, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexis K. Jolly
- School of Medicine, University of Edinburgh, Edinburgh EH16 4UX, UK;
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Shifu Aggarwal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.A.); (L.G.R.)
- Department of Microbiology, Harvard Medical School, Boston, MA 02114, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.A.); (L.G.R.)
- Department of Microbiology, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Kristin H. Gilchrist
- 4D Bio3 Center for Biotechnology, Department of Radiology and Bioengineering, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA;
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Gelfand
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Boston, MA 02114, USA; (L.B.N.); (S.K.); (W.F.); (R.W.R.); (R.R.A.)
- Vaccine & Immunotherapy Center, Division of Infectious Diseases, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Najari E, Zamani S, Sheikh Arabi M, Ardebili A. Antimicrobial photodynamic effect of the photosensitizer riboflavin, alone and in combination with colistin, against pandrug-resistant Pseudomonas aeruginosa clinical isolates. J Infect Chemother 2024; 30:892-898. [PMID: 38432556 DOI: 10.1016/j.jiac.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Development of multi-, extensively-, and pandrug-resistant (MDR, XDR, and PDR) strains of Pseudomonas aeruginosa remains a major problem in medical care. The present study evaluated the effect of antimicrobial photodynamic therapy (aPDT) as a monotherapy and in combination with colistin against P. aeruginosa isolates. METHODS Two P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Minimum inhibitory concentration (MIC) of colistin was determined by the colistin broth disk elution (CBDE) and the reference broth microdilution (rBMD) methods. aPDT was performed using the photosensitizer (Ps) riboflavin at several concentrations and a light-emitting diode (LED) emitting blue light for different irradiation times with or without colistin at 1/2 × MIC concentration. RESULTS Both PA1 and PA2 isolates were identified as colistin-resistant P. aeruginosa with a MIC ≥4 μg/mL by the CBDE and MICs of 512 μg/mL and 256 μg/mL, respectively, by the rBMD. In aPDT, neither riboflavin nor LED light alone had antibacterial effects. The values of colony forming units per milliliter (CFU/mL) in both isolates were significantly reduced by LED + Ps treatments in a time-dependent manner (LED irradiation time) and dose-dependent manner (Ps concentration). In comparison with control, treatment with Ps (50 μM) + LED (120 s) and Ps (100 μM) + LED (120 s) resulted in 0.27 log10 CFU/mL and 0.43 log10 CFU/mL reductions in PA1, and 0.28 log10 CFU/mL and 0.34 log10 CFU/mL reductions in PA2, respectively, (P < 0.01). The best results were obtained after the combination of aPDT followed by colistin, which increased bacterial reduction, resulting in a 0.41-0.7 log10 CFU/mL reduction for PA1 and 0.35-0.83 log10 CFU/mL reduction for PA2 (P = 0.001). CONCLUSIONS This study suggests the potential implications of aPDT in combination with antibiotics, such as colistin for treatment of difficult-to-treat P. aeruginosa infections.
Collapse
Affiliation(s)
- Ehsan Najari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Samin Zamani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Abdollah Ardebili
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Liu T, Chen D, Tang S, Zou Z, Yang F, Zhang Y, Wang D, Lu H, Liao G, Liu X. P53 Alleviates the Progression of Periodontitis by Reducing M1-type Macrophage Differentiation. Inflammation 2024; 47:1170-1184. [PMID: 38319542 PMCID: PMC11343802 DOI: 10.1007/s10753-024-01968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Our objective is to explore the effect of P53 on the progression of periodontitis by regulating macrophages differentiation both in vitro and in vivo. Eighteen normal and periodontitis gingival tissues were collected for detecting P53 expression and macrophages infiltration by immunofluorescence, real-time PCR (qPCR) and western-blot. The differentiation and the inflammatory cytokines (TNF-α and IL-6) expression of THP-1, RAW264.7 and bone marrow derived macrophage (BMDM) cells, treating with Pifithrin-α (P53 inhibitor) or Nutlin-3a (P53 activator) under lipopolysaccharide (LPS) stimulation, were observed by flow cytometry, qPCR and ELISA. The severity of periodontitis, inflammatory cytokines expression and macrophages infiltration were measured in experimental periodontitis wild-type mice and p53 gene conditional knocked-out (p53-CKO) mice, which were established by ligation and LPS injection. A higher number of P53-positive macrophages was found infiltrated in periodontitis tissues. In vitro experiments showed that compared with Nutlin-3a, the proportion of M1-type macrophages and the expression of TNF-α and IL-6 were higher in Pifithrin-α treated cells under LPS stimulation. In vivo experimental periodontitis mice, the Pifithrin-α intraperitoneal injection group showed greater alveolar bone loss, higher levels of TNF-α and IL-6 secretion and more M1-type macrophages infiltration, while the Nutlin-3a intraperitoneal injection group were observed mild symptoms compared with mice in the periodontitis group. P53-CKO mice exhibited more severe periodontitis and more M1-type macrophages infiltrated in local tissues compared with wild-type mice. The activation of p53 gene could alleviate periodontitis by reducing M1-type macrophage polarization. P53 may serve as keeper in the progression of periodontitis, providing new insights into periodontitis treatment.
Collapse
Affiliation(s)
- Tingting Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dongru Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fangyi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutian Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wu M, Kong X, Li H, Ji Y, He S, Shi Y, Hu H. Cyclic peptide conjugated photosensitizer for targeted phototheranostics of gram-negative bacterial infection. Bioorg Chem 2024; 145:107203. [PMID: 38377817 DOI: 10.1016/j.bioorg.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising alternative to antibiotics for eradicating pathogenic bacterial infections. It holds advantage of not inducing antimicrobial resistance but is limited for the treatment of gram-negative bacterial infection due to the lack of photosensitizer (PS) capable of targeted permeating the outer membrane (OM) of gram-negative bacteria. To facilitate the targeted permeability of PS, cyclic polymyxin b nonapeptide that can specifically bind to the lipopolysaccharide on OM, is conjugated to an FDA approved PS chlorin e6 via variable linkers. Based on structure to activity study, C6pCe6 with aminohexanoic linker and P2pCe6 with amino-3, 6-dioxaoctanoic linker are identified to preferentially image gram-negative bacteria. These two conjugates also exhibit improved aqueous dispersity and enhanced ROS generation, consequently enabled their selective bactericidal activities against gram-negative bacteria upon 660 nm light irradiation. The effective photobactericidal ability of P2pCe6 is further validated on P. aeruginosa infected G. mellonella. Moreover, it is demonstrated to effectively treat the P. aeruginosa infection and accelerate the healing process at the wound site of mouse. Owing to the light irradiation triggered targeted imaging and enhanced bactericidal capacities, P2pCe6 hold great potential to serve as a potent PS for mediating the phototheranostics of gram-negative bacterial infection.
Collapse
Affiliation(s)
- Minghao Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huang Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yajing Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
7
|
Inhibitory effect of 405 nm laser light on bacterial biofilm in urethral stent. Sci Rep 2023; 13:3908. [PMID: 36890147 PMCID: PMC9995349 DOI: 10.1038/s41598-023-30280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
The clinical use of urethral stents is usually complicated by various adverse effects, including dysuria, fever, and urinary tract infection (UTI). Biofilms (formed by bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) adhering to the stent cause UTIs in stented patients (approximately 11%). The undesirable consequences of antibiotics use include bacterial resistance, weight gain, and type 1 diabetes, which occur when antibiotics are used for a long time. We aimed to assess the efficacy of a new optical treatment with a 405 nm laser to inhibit bacterial growth in a urethral stent in vitro. The urethral stent was grown in S. aureus broth media for three days to induce biofilm formation under dynamic conditions. Various irradiation times with the 405 nm laser light were tested (5, 10, and 15 min). The efficacy of the optical treatment on biofilms was evaluated quantitatively and qualitatively. The production of reactive oxygen species helped eliminate the biofilm over the urethral stent after 405 nm irradiation. The inhibition rate corresponded to a 2.2 log reduction of colony-forming units/mL of bacteria after 0.3 W/cm2 of irradiation for 10 min. The treated stent showed a significant reduction in biofilm formation compared with the untreated stent, as demonstrated by SYTO 9 and propidium iodide staining. MTT assays using the CCD-986sk cell line revealed no toxicity after 10 min of irradiation. We conclude that optical treatment with 405 nm laser light inhibits bacterial growth in urethral stents with no or minimal toxicity.
Collapse
|
8
|
Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms. Photodiagnosis Photodyn Ther 2022; 42:103142. [PMID: 36191747 DOI: 10.1016/j.pdpdt.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
Collapse
|
9
|
Aroso RT, Dias LD, Blanco KC, Soares JM, Alves F, da Silva GJ, Arnaut LG, Bagnato VS, Pereira MM. Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112499. [PMID: 35689931 DOI: 10.1016/j.jphotobiol.2022.112499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The emergence of new microorganisms with resistance to current antimicrobials is one of the key issues of modern healthcare that must be urgently addressed with the development of new molecules and therapies. Photodynamic inactivation (PDI) in combination with antibiotics has been recently regarded as a promising wide-spectrum therapy for the treatment of localized topical infections. However, further studies are required regarding the selection of the best photosensitizer structures and protocol optimization, in order to maximize the efficiency of this synergic interaction. In this paper, we present results that demonstrate the influence of the structure of cationic imidazolyl-substituted photosensitizers and light on the enhancement of ciprofloxacin (CIP) activity, for the inactivation of Escherichia coli. Structure-activity studies have highlighted the tetra cationic imidazolyl porphyrin IP-H-Me4+ at sub-bactericide concentrations (4-16 nM) as the most promising photosensitizer for combination with sub-inhibitory CIP concentration (<0.25 mg/L). An optimized dual phototherapy protocol using this photosensitizer was translated to in vivo studies in mice wounds infected with E. coli. This synergic combination reduced the amount of photosensitizer and ciprofloxacin required for full E. coli inactivation and, in both in vitro and in vivo studies, the combination therapy was clearly superior to each monotherapy (PDI or ciprofloxacin alone). Overall, these findings highlight the potential of cationic imidazolyl porphyrins in boosting the activity of antibiotics and lowering the probability of resistance development, which is essential for a sustainable long-term treatment of infectious diseases.
Collapse
Affiliation(s)
- Rafael T Aroso
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Gabriela J da Silva
- Faculdade de Farmácia e Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Luís G Arnaut
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil,; Hagler Fellows, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Mariette M Pereira
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
10
|
Liu D, Ma X, Ji Y, Chen R, Zhou S, Yao H, Zhang Z, Ye M, Xu Z, Du M. Bioresponsive nanotherapy for preventing dental caries by inhibiting multispecies cariogenic biofilms. Bioact Mater 2021; 14:1-14. [PMID: 35310362 PMCID: PMC8891616 DOI: 10.1016/j.bioactmat.2021.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Early childhood caries (ECC) is a public healthcare concern that greatly reduces the quality of life of young children. As a leading factor of ECC, cariogenic biofilms are composed of acidogenic/aciduric pathogens and extracellular polysaccharides (EPSs), creating an acidic and protected microenvironment. Antimicrobial photodynamic therapy (aPDT) is a noninvasive, painless, and efficient therapeutic approach that is suitable for treating ECC. However, due to the hyperfine structure of cariogenic biofilms, most photosensitizers (PSs) could not access and penetrate deeply in biofilms, which dramatically hamper their efficiency in the clinic. Herein, bioresponsive nanoparticle loaded with chlorin e6 (MPP-Ce6) is developed, which largely increases the penetration depth (by over 75%) and retention (by over 100%) of PS in the biofilm compared with free Ce6. Furthermore, MPP-Ce6-mediated aPDT not only kills the bacteria in preformed biofilms but also inhibits multispecies biofilm formation. A rampant caries model is established to mimic ECC in vivo, where the population of cariogenic bacteria is decreased to 10% after MPP-Ce6-mediated aPDT. Importantly, the number and severity of carious lesions are efficiently reduced via Keyes’ scoring and micro-CT analysis. This simple but effective strategy can serve as a promising approach for daily oral hygiene in preventing ECC. A pH-responsive nano-system is developed for biofilm-targeted drug delivery. The nano-system could overcome biological barriers and penetrate deeply in biofilms. This nano-system facilitates aPDT to kill bacteria in deep cariogenic biofilm. This strategy prevents the progression of early childhood caries in a rat model.
Collapse
Affiliation(s)
- Danfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Xianbin Ma
- School of Materials and Energy & Chongqing Engineering Research Center for MicroNano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, PR China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Rourong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Shuhui Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zichen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Mengjie Ye
- School of Materials and Energy & Chongqing Engineering Research Center for MicroNano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, PR China
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for MicroNano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, PR China
- Corresponding author.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
- Corresponding author.,
| |
Collapse
|
11
|
Tichaczek-Goska D, Gleńsk M, Wojnicz D. The Enhancement of the Photodynamic Therapy and Ciprofloxacin Activity against Uropathogenic Escherichia coli Strains by Polypodium vulgare Rhizome Aqueous Extract. Pathogens 2021; 10:pathogens10121544. [PMID: 34959499 PMCID: PMC8704307 DOI: 10.3390/pathogens10121544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic therapy and photodynamic therapy (PDT) are commonly used to treat bacterial infections. Unfortunately, these methods are often ineffective. Therefore, agents that could effectively support antibiotic therapy and PDT in the inactivation of pathogens are being sought. Phytotherapy seems to be a good solution. The aim of the current research was to examine whether Polypodium vulgare extract (PvE) would improve the effectiveness of PDT and ciprofloxacin (CIP), an antibiotic that is commonly used to treat urinary tract infections in humans. UHPLC-MS analysis was performed to establish the PvE content. Chlorin e6 has been used as a photosensitizer in the PDT method. Biofilm production was established using the spectrophotometric method. The live cell count in planktonic and biofilm consortia was determined with the microdilution method and DAPI staining. The decrease of the bacterial survival, biofilm mass synthesis, and morphological changes of the bacteria under the combined treatments: PDT+PvE and CIP+PvE was noted. The results clearly indicate that the PvE can be used as a good agent for improving the efficacy of both PDT and the CIP activity to inactivate uropathogenic Escherichia coli strains. The obtained results are of particular value in the era of widespread and still-increasing drug resistance among bacterial pathogens.
Collapse
Affiliation(s)
- Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wrocław Medical University, 50-367 Wrocław, Poland;
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-367 Wrocław, Poland;
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Wrocław Medical University, 50-367 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-784-15-18
| |
Collapse
|
12
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
13
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
14
|
Photodynamic Therapy Combined with Antibiotics or Antifungals against Microorganisms That Cause Skin and Soft Tissue Infections: A Planktonic and Biofilm Approach to Overcome Resistances. Pharmaceuticals (Basel) 2021; 14:ph14070603. [PMID: 34201530 PMCID: PMC8308592 DOI: 10.3390/ph14070603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.
Collapse
|
15
|
Sun Y, Sun X, Li X, Li W, Li C, Zhou Y, Wang L, Dong B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2020; 268:120614. [PMID: 33360771 DOI: 10.1016/j.biomaterials.2020.120614] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Antibacterial photodynamic therapy (aPDT) is of vital importance for the treatment of periodontal diseases due to its great potential on effective elimination of pathogenic bacteria via overwhelming reactive oxygen species (ROS) generation. However, the excessive ROS after the therapeutic process may impose an oxidative stress within periodontal pockets, consequently leading to an irreversible destroy in surrounding tissue and severely limit its biomedical applications. In this study, considering the contradiction between ROS in bacteriostasis and inflammation, the role of ROS in different temporal and spatial states has been fully studied. Accordingly, we have designed composite nanomaterials that can play ROS based aPDT and anti-inflammatory effect by eliminating ROS, taking account of different ratio of photosensitizer/ROS scavenger to realize a time-sequential manner. Herein, a simple multifunctional nanocomposite was fabricated by coating red light-excited photosensitizer chlorin e6 (Ce6) onto nanoceria, achieving simultaneous sterilization and inflammation elimination via a dual directional regulation effect. This nano-based platform could utilize the aPDT for antibacterial purpose in the first stage with red-light irradiation, and subsequently scavenge the residual ROS via nanoceria to modulate host immunity by down-regulating the M1 polarization (pro-inflammatory) of macrophages and up-regulating the M2 polarization (anti-inflammatory and regenerative) of macrophages. Moreover, the local ROS level induced by activated inflammation pathway can be adjusted in a very long time because of the charge conversion effect of CeO2. The regenerative potential of inflammatory surrounding tissues was improved in the animal model. Our strategy will open a new inspiration to fight against the defects of aPDT in the treatment of periodontal disease, even in the anti-infection therapy for the future clinical application.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wen Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Feng Y, Palanisami A, Ashraf S, Bhayana B, Hasan T. Photodynamic inactivation of bacterial carbapenemases restores bacterial carbapenem susceptibility and enhances carbapenem antibiotic effectiveness. Photodiagnosis Photodyn Ther 2020; 30:101693. [PMID: 32173586 DOI: 10.1016/j.pdpdt.2020.101693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
The global emergence of carbapenemases in bacterial pathogens has rendered many life-threatening infections untreatable. Even though using carbapenemase inhibitors are a proven strategy in the battle against bacterial carbapenem resistance, developing inhibitors that could universally inactivate all bacterial carbapenemases is extremely challenging given the large diversity and the continuous evolution of bacterial carbapenemases. Antimicrobial photodynamic therapy (aPDT), an upcoming antimicrobial therapy, is demonstrated here for the first time to be a generalized approach to impair the bacterial carbapenemases without being limited by the molecular identities of the carbapenemases. In addition, aPDT is shown to prevent carbapenem antibiotic degradation, thereby enhancing the efficacy of carbapenem antibiotic against the carbapenemase-producing pathogens. Besides the enzyme activity impairment, aPDT was documented here to be genetically toxic for bacteria, and thus radically damage the carbapenemase genetic determinants in bacteria and prevent the transmission of carbapenemases among pathogens. By leveraging the universal carbapenemase-inactivating property of aPDT, it may be possible to make the incurable infections caused by the bacterial carbapenemases susceptible to carbapenem again.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Akilan Palanisami
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, Massachusetts, USA.
| |
Collapse
|