1
|
Pereira DA, Bonatto MS, Soares EC, Mendes PGJ, Pessoa RSE, de Oliveira GJPL. Photobiomodulation With Infrared and Dual-Wavelength Laser Induces Similar Repair and Control of Inflammation After Third Molar Extraction: A Double-Blinded Split-Mouth Randomized Controlled Trial. J Oral Maxillofac Surg 2025; 83:332-343. [PMID: 39645230 DOI: 10.1016/j.joms.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT) has been showed to have beneficial effects on the healing and control of inflammation associated with oral surgical wounds. However, different PBMT protocols have been proposed and it is not clear if different protocols impact the hard and soft tissues healing equally. PURPOSE To compare the tissue repair of postextraction alveoli of third molars between treated with dual-wavelength PBMT (red and infrared) or PBMT with infrared laser (IRL) alone. STUDY DESIGN, SETTING, SAMPLE This split mouth randomized controlled trial enrolled 20 patients, who were submitted to the extraction of the 4 partially erupted or fully impacted third molars between August 2023 and December 2023 at the clinic of the INPES postgraduate school (Institute for Clinical Health Research), and at the Federal University of Uberlândia. Adult with all the 4 molars were included in this study, while patients with systemic diseases/conditions, with less than 4 third molars were excluded of this study. EXPOSURE VARIABLE The exposure variable is PBMT treatment. Treatment side was randomly allocated to according to the PBMT protocol applied on the postextraction sockets: IRL-PBMT: irradiation with PBMT with an IRL (808 nm) and IRL-RL-PBMT: irradiation with dual-wavelength PBMT (660 and 808 nm). MAIN OUTCOME VARIABLE(S) The primary outcome variable was the bone tissue healing that was measured using the fractal analysis and bone tissue density assessed using the radiographic images. The secondary outcome variable was soft tissue healing measured assessing the facial dimensions variations and a healing index that assessed the tissue consistence, color, exudation, bleeding, and edema. Additionally, the analyses centered on the patients' perceptions was assessed by the application of a visual analogic scale to assess pain, bleeding, edema, difficulty in chewing, and mouth opening conditions. Subjects were clinically evaluated at 3, 7, 14, 30, and 90 days after the surgical procedure. COVARIATES The covariates are the tooth position, and the demographic data (age and sex). ANALYSES The evaluation of the effects of the independent variables (Treatment and period of evaluation) on the primary and secondary outcomes was performed through the application of the repeated measures ANOVA (P < .05). RESULTS The sample was composed of 20 subjects with a mean age of 28.58 ± 8.94 years, and 12 (60%) were females. There were no statistically significant differences between the 2 treatments for any outcome variables (P > .10). CONCLUSION AND RELEVANCE It can be concluded that PBMT with dual wavelengths (red and infrared) and an IRL alone induced similar postoperative clinical results after third molar extraction surgeries.
Collapse
Affiliation(s)
- Davisson Alves Pereira
- Post Graduation Student, Federal University of Uberlândia - UFU, School of Dentistry, Department of Periodontology, Uberlândia, Minas Gerais, Brazil
| | - Mariana Silva Bonatto
- Post Graduation Student, Federal University of Uberlândia - UFU, School of Dentistry, Department of Periodontology, Uberlândia, Minas Gerais, Brazil
| | - Eduvaldo Campos Soares
- Post Graduation Student, Federal University of Uberlândia - UFU, School of Dentistry, Department of Periodontology, Uberlândia, Minas Gerais, Brazil
| | - Pedro Gomes Junqueira Mendes
- Post Graduation Student, Federal University of Uberlândia - UFU, School of Dentistry, Department of Periodontology, Uberlândia, Minas Gerais, Brazil
| | - Roberto Sales E Pessoa
- Professor, School of Dentistry, Universidade do Triangulo -UNITRI, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Chou LH, Yang TS, Wong PC, Chen YC. Synergistic effects of platelet-rich fibrin and photobiomodulation on bone regeneration in MC3T3-E1 Preosteoblasts. Photodiagnosis Photodyn Ther 2025; 51:104436. [PMID: 39645012 DOI: 10.1016/j.pdpdt.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) and Photobiomodulation (PBM) are established methods for promoting bone healing. PRF enhances cell proliferation and migration due to its rich concentration of growth factors, while PBM stimulates tissue repair through mitochondrial activation. Despite their efficacies, no in-depth studies have explored the synergistic effects of combining PRF and PBM. METHODS PRF was prepared at 50 % and 100 % concentrations, and PBM was applied using an 830 nm near-infrared laser at a dose of 5 J/cm². Cell viability, migration, and calcium deposition were assessed over seven and fourteen days. RESULTS The combination of PRF and PBM significantly improved cell viability, migration, and calcium deposition, with the most notable effects observed after seven and fourteen days. However, a slight decrease in calcium deposition was noted in the 100 % PRF combined with the PBM group, suggesting a potential feedback mechanism at higher PRF concentrations. CONCLUSIONS This study explores the synergistic effects of PRF and PBM, offering new insights into optimizing bone tissue engineering strategies. The findings highlight the potential of this combined approach in enhancing bone regeneration, although further research is needed to refine the optimal conditions for these therapies.
Collapse
Affiliation(s)
- Ling-Hung Chou
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
3
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
4
|
Furtado GS, Martin V, Araújo R, Gomes PS, Lago ADN. Osteoinductive activity of photobiomodulation in an organotypic bone model. Photodiagnosis Photodyn Ther 2024; 45:103936. [PMID: 38104705 DOI: 10.1016/j.pdpdt.2023.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Photobiomodulation (PBM) is a technique that harnesses non-ionizing light at specific wavelengths, triggering the modulation of metabolic pathways, engendering favourable biological outcomes that reduce inflammation and foster enhanced tissue healing and regeneration. PBM holds significant promise for bone tissue applications due to its non-invasive nature and ability to stimulate cellular activity and vascularization within the healing framework. Notwithstanding, the impact of PBM on bone functionality remains largely undisclosed, particularly in the absence of influencing factors such as pathologies or regenerative therapies. This study aims to investigate the potential effects of PBM using red (660 nm) (RED) and near-infrared (808 nm) (NIR) wavelengths within an ex vivo bone culture system - the organotypic embryonic chicken femur model. A continuous irradiation mode was used, administering a total energy dose of 1.0 J, at an intensity of 100 mW for 10 s, which was repeated four times over the course of the 11-day culture period. The primary focus is on characterizing the expression of pivotal osteoblastic genes, the maturation and deposition of collagen, and the formation of bone mineral. Exposing femora to both RED and NIR wavelengths led to a notable increase in the expression of osteochondrogenic transcription factors (i.e., SOX9 and RUNX2), correlating with enhanced mineralization. Notably, NIR irradiation further elevated the expression of bone matrix-related genes and fostered enhanced deposition and maturation of fibrillar collagen. This study demonstrates that PBM has the potential to enhance osteogenic functionality within a translational organotypic bone culture system, with the NIR wavelength showing remarkable capabilities in augmenting the formation and maturation of the collagenous matrix.
Collapse
Affiliation(s)
- Guilherme Silva Furtado
- Graduate Student in the Postgraduate Program in Dentistry at the Federal University of Maranhão, Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, Brazil
| | - Victor Martin
- DDS, MSc and Graduate student at Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, Porto 4200-393, Portugal; REQUIMTE/LAQV, University of Porto, Praça Coronel Pacheco, 15, Porto 4050-453, Portugal
| | - Rita Araújo
- DDS, MSc and Graduate student at Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, Porto 4200-393, Portugal; REQUIMTE/LAQV, University of Porto, Praça Coronel Pacheco, 15, Porto 4050-453, Portugal
| | - Pedro Sousa Gomes
- REQUIMTE/LAQV, University of Porto, Praça Coronel Pacheco, 15, Porto 4050-453, Portugal; DDS, MSc, PhD Full Professor at Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| | - Andréa Dias Neves Lago
- DDS, MSc, PhD, Associate Professor of the Postgraduate Program in Dentistry at the Federal University of Maranhão, São Luís, Maranhão, Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, Brazil
| |
Collapse
|
5
|
Mochetti MM, Pessoa AS, Tokuhara CK, Sanches MLR, Senger C, Moreira MAA, Oliveira RC. Red light-emitting diode therapy minimizes the functional deleterious effects of the antiretroviral ritonavir on osteoblasts in vitro. Lasers Med Sci 2024; 39:34. [PMID: 38231300 DOI: 10.1007/s10103-024-03979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE Long-term human immunodeficiency virus (HIV)-infected patients are considered at higher risk for osteoporosis. Among the various causes that lead these patients to lower bone health, there is the use of antiretroviral drugs (ARVs), especially protease inhibitors (PI), such as ritonavir (RTV). In this context, emerge the potential benefits of LED therapy, whose effects on bone cells are currently being extensively studied, showing a modulation in cell differentiation. However, it remains unclear if photobiostimulation might interfere with RTV effects on osteoblast differentiation. METHODS In the present study, we investigated the effects of red LED (625 nm) irradiation (15 mW/cm2, 0.2 J/cm2, and 8 mW/cm2, 0.12 J/cm2) on osteoblast cell line MC3T3-E1 treated with RTV (2.5, 5, and 10 μg/mL). RESULTS Our results indicated that red LED irradiation was able to reverse, or at least minimize, the deleterious effects of RTV on the osteoblasts. Neither the ARV treatments 5 and 10 μg/mL (104.4% and 95.01%) nor the LED protocols (100.3% and 105.7%) statistically altered cell viability, assessed by the MTT assay. Also, the alkaline phosphatase activity and mineralization showed a decrease in osteoblast activity followed by ARV exposure (39.3-73%), which was attenuated by LED in more than 70% with statistical significance (p < 0.05). CONCLUSION In conclusion, photobiostimulation with red LED at 625 nm was associated with improved beneficial biological effects as a potential inducer of osteogenic activity on RTV-affected cells. This is the first study that investigated the benefits of red LED irradiation over ARV-treated in vitro osteoblasts.
Collapse
Affiliation(s)
- Matheus Menão Mochetti
- Medicine Course, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Adriano Souza Pessoa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Mariana Liessa Rovis Sanches
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Cassia Senger
- Medicine Course, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Aparecida Andrade Moreira
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|
6
|
Berni M, Brancato AM, Torriani C, Bina V, Annunziata S, Cornella E, Trucchi M, Jannelli E, Mosconi M, Gastaldi G, Caliogna L, Grassi FA, Pasta G. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int J Mol Sci 2023; 24:7094. [PMID: 37108257 PMCID: PMC10139216 DOI: 10.3390/ijms24087094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.
Collapse
Affiliation(s)
- Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Camilla Torriani
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Elena Cornella
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
7
|
Peng L, Wu F, Cao M, Li M, Cui J, Liu L, Zhao Y, Yang J. Effects of different physical factors on osteogenic differentiation. Biochimie 2023; 207:62-74. [PMID: 36336107 DOI: 10.1016/j.biochi.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Osteoblasts are essential for bone formation and can perceive external mechanical stimuli, which are translated into biochemical responses that ultimately alter cell phenotypes and respond to environmental stimuli, described as mechanical transduction. These cells actively participate in osteogenesis and the formation and mineralisation of the extracellular bone matrix. This review summarises the basic physiological and biological mechanisms of five different physical stimuli, i.e. light, electricity, magnetism, force and sound, to induce osteogenesis; further, it summarises the effects of changing culture conditions on the morphology, structure and function of osteoblasts. These findings may provide a theoretical basis for further studies on bone physiology and pathology at the cytological level and will be useful in the clinical application of bone formation and bone regeneration technology.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
8
|
Lazăr L, Manu DR, Dako T, Mârțu MA, Suciu M, Ormenișan A, Păcurar M, Lazăr AP. Effects of Laser Application on Alveolar Bone Mesenchymal Stem Cells and Osteoblasts: An In Vitro Study. Diagnostics (Basel) 2022; 12:diagnostics12102358. [PMID: 36292047 PMCID: PMC9600660 DOI: 10.3390/diagnostics12102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells isolated from the bone marrow have a great differentiation potential, being able to produce many cell lines, including osteoblasts. Osteoblasts have an important role in bone remodeling by actively participating in the maturation and mineralization of the extracellular matrix. The aim of this study was to determine the effect of laser application on the viability and proliferation of osteoblasts. Methods: Alveolar bone was harvested from 8 patients and placed into a culture medium to induce proliferation of mesenchymal stem cells. These were differentiated into osteoblasts in special conditions. The cells from each patient were split into two groups, one was treated using a 980 nm laser (1W output power, pulsed mode, 20 s, 50 mm distance) (laser “+”) and the other one did not receive laser stimulation (laser “-”). Results: Using the confocal microscope, we determined that the cells from the laser “+” group were more active when compared to the laser “-” group. The number of cells in the laser “+” group was significantly greater compared to the laser “-” group as the ImageJ-NIH software showed (p = 0.0072). Conclusions: Laser application increases the proliferation rate of osteoblasts and intensifies their cellular activity.
Collapse
Affiliation(s)
- Luminița Lazăr
- Department of Periodontology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Timea Dako
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
- Correspondence: (T.D.); (M.-A.M.); Tel.: +40-740629857 (T.D.)
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (T.D.); (M.-A.M.); Tel.: +40-740629857 (T.D.)
| | - Mircea Suciu
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Alina Ormenișan
- Department of Oral and Maxillofacial Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Mariana Păcurar
- Department of Orthodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Ana-Petra Lazăr
- Institution Organizing University Doctoral Studies (I. O. S. U. D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureş, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| |
Collapse
|
9
|
Si D, Su B, Zhang J, Zhao K, Li J, Chen D, Hu S, Wang X. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro. Lasers Med Sci 2022; 37:3509-3516. [PMID: 36066778 DOI: 10.1007/s10103-022-03624-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 10/14/2022]
Abstract
Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Daiwei Si
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Bo Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jingwei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Kui Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - JinMeng Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - DeChun Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - ShiQi Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
10
|
LED photobiomodulation therapy combined with biomaterial as a scaffold promotes better bone quality in the dental alveolus in an experimental extraction model. Lasers Med Sci 2021; 37:1583-1592. [PMID: 34767116 DOI: 10.1007/s10103-021-03407-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/20/2021] [Indexed: 10/19/2022]
Abstract
A bone scaffold added to the dental alveolus immediately after an extraction avoids bone atrophy and deformity at the tooth loss site, enabling rehabilitation with implants. Photobiomodulation accelerates bone healing by stimulating blood flow, activating osteoblasts, diminishing osteoclastic activity, and improving the integration of the biomaterial with the bone tissue. The aim of the present study was to evaluate the effect of photobiomodulation with LED at a wavelength of 850 nm on bone quality in Wistar rats submitted to molar extraction with and without a bone graft using hydroxyapatite biomaterial (Straumann® Cerabone®). Forty-eight rats were distributed among five groups (n = 12): basal (no interventions); control (extraction) (basal and control were the same animal, but at different sides); LED (extraction + LED λ = 850 nm); biomaterial (extraction + biomaterial), and biomaterial + LED (extraction + biomaterial + LED λ = 850 nm). Euthanasia occurred at 15 and 30 days after the induction of the extraction. The ALP analysis revealed an improvement in bone formation in the control and biomaterial + LED groups at 15 days (p = 0.0086 and p = 0.0379, Bonferroni). Moreover, the LED group had better bone formation compared to the other groups at 30 days (p = 0.0007, Bonferroni). In the analysis of AcP, all groups had less resorption compared to the basal group. Bone volume increased in the biomaterial, biomaterial + LED, and basal groups in comparison to the control group at 15 days (p < 0.05, t-test). At 30 days, the basal group had greater volume compared to the control and LED groups (p < 0.05, t-test). LED combined with the biomaterial improved bone formation in the histological analysis and diminished bone degeneration (demonstrated by the reduction in AcP), promoting an increase in bone density and volume. LED may be an important therapy to combine with biomaterials to promote bone formation, along with the other known benefits of this therapy, such as the control of pain and the inflammatory process.
Collapse
|
11
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
12
|
Optical and thermal fields induced in the bone marrow by external laser irradiation. Lasers Med Sci 2021; 37:1245-1253. [PMID: 34347196 DOI: 10.1007/s10103-021-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
In regenerative medicine, the problem of growing mesenchymal stem cells from the bone marrow often arises. In such cases is important that the number of initial cells was large enough and their proliferative activity was high. We believe that this problem can be solved by short-term heating of local areas of the bone marrow in vivo with laser radiation. In this regard, it is of interest to study the optical and temperature fields induced inside the tubular bone under external laser irradiation. In this work, we obtained experimental data on the spatial distribution of temperature in the bone marrow of the rat femur in vitro under external exposure to laser radiation with wavelengths of 970 and 1940 nm. Radiation delivery was carried out using an optical fiber which tip contacted the surface of the femur bone. A thin thermocouple was used to measure the temperature in a local area of the bone marrow. By moving the optical fiber tip discretely along the longitudinal axis of the bone, and the thermocouple in the perpendicular direction, the spatial temperature distributions in dynamics were measured. Similarly, the spatial distributions of the laser radiation intensity were measured by replacing thermocouple with optical fiber probe. A thermal camera was used to control the temperature of the bone surface near the tip of the fiber. It was shown that the marrow could be heated from the outside by about 5-10 °C during 10 s without significant overheating of the bone tissue. The data obtained make it possible to estimate the volume of the bone marrow heated by the laser to a predetermined temperature and to make a reasonable choice of laser exposure modes to stimulate the proliferative activity of bone marrow mesenchymal stem cells in vivo.
Collapse
|
13
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|