1
|
Bont LG, Blattert C, Rath L, Schweier J. Automatic detection of forest management units to optimally coordinate planning and operations in forest enterprises. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123276. [PMID: 39561455 DOI: 10.1016/j.jenvman.2024.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Mountain forests provide not only wood as a raw material but also numerous ecosystem services, such as protection against natural hazards, recreation and carbon sequestration, and they are important hosts for biodiversity. To manage these forests efficiently and in a target-oriented manner, both forest management planning and efficient harvesting operations are required. However, in most cases these two aspects are handled independently from each other. To link planning with forest operations, it is essential to divide forests into smaller areas with characteristics that are as homogeneous as possible, so-called forest management units (FMUs). The goal is that each FMU has self-contained fine access (e.g. skid roads, cable roads), and that the FMUs can be managed and planned independently. The aim of this study was to develop a spatial optimisation model that automatically identifies FMUs. The optimisation has three goals: [I] FMUs should be as compact as possible (spatially contiguous as the best case); [II] forest management should be technically and operationally coordinated within an FMU; and [III] FMUs should be as homogeneous as possible, for example regarding site properties, ecosystem service provided, and administrative affiliation. Results showed that our presented spatial optimisation model is a capable method for automatically identifying FMUs. The approach used to set up the model based on a p-median problem formulation (mixed integer linear programming) led to clearly comprehensible solutions that can be achieved in a reasonable computation time. Three solving strategies for successful computation implementation are described. Although the raw results must be reviewed by experts, they facilitate the planning process. More scenarios can be evaluated compared with the classical manual planning approach, ultimately leading to higher-quality solutions.
Collapse
Affiliation(s)
- Leo Gallus Bont
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Sustainable Forestry Group, Zuercherstrasse 111, CH 8903, Birmensdorf, Switzerland.
| | - Clemens Blattert
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Sustainable Forestry Group, Zuercherstrasse 111, CH 8903, Birmensdorf, Switzerland
| | - Lioba Rath
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Sustainable Forestry Group, Zuercherstrasse 111, CH 8903, Birmensdorf, Switzerland
| | - Janine Schweier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Sustainable Forestry Group, Zuercherstrasse 111, CH 8903, Birmensdorf, Switzerland
| |
Collapse
|
2
|
van den Bosch M, Bartolomeu ML, Williams S, Basnou C, Hamilton I, Nieuwenhuijsen M, Pino J, Tonne C. A scoping review of human health co-benefits of forest-based climate change mitigation in Europe. ENVIRONMENT INTERNATIONAL 2024; 186:108593. [PMID: 38531235 DOI: 10.1016/j.envint.2024.108593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.
Collapse
Affiliation(s)
- Matilda van den Bosch
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain; School of Population and Public Health, University of British Columbia, Vancouver, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; European Forest Institute, Biocities Facility Rome, Italy.
| | - María Lucía Bartolomeu
- Dirección Nacional de Epidemiología del Ministerio de Salud de La Nación, Buenos Aires, Argentina
| | - Sarah Williams
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Ian Hamilton
- University College London, London, United Kingdom
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Cathryn Tonne
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|