1
|
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E 2023; 108:014409. [PMID: 37583224 DOI: 10.1103/physreve.108.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.
Collapse
Affiliation(s)
- Md Elius
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Kenneth Boyle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Wei-Shun Chang
- Department of Chemistry & Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| |
Collapse
|
2
|
Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1 T. Antonie Van Leeuwenhoek 2023; 116:39-51. [PMID: 36396850 DOI: 10.1007/s10482-022-01796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Members of the genus Alteromonas are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain Alteromonas fortis 1T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with A. fortis 1 T, and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and A. fortis 1T. However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related Alteromonas strains.
Collapse
|
3
|
Sasidharan A, Sabu S, Venugopal V. Marine polymers and their antioxidative perspective. MARINE ANTIOXIDANTS 2023:379-393. [DOI: 10.1016/b978-0-323-95086-2.00031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Khan R, Shah MD, Shah L, Lee PC, Khan I. Bacterial polysaccharides-A big source for prebiotics and therapeutics. Front Nutr 2022; 9:1031935. [PMID: 36407542 PMCID: PMC9671505 DOI: 10.3389/fnut.2022.1031935] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 07/29/2023] Open
Abstract
Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.
Collapse
Affiliation(s)
- Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Luqman Shah
- Department of Biochemistry, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
5
|
Dhanya BE, Athmika, Rekha PD. Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro. 3 Biotech 2021; 11:491. [PMID: 34790515 PMCID: PMC8578477 DOI: 10.1007/s13205-021-03034-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Natural biopolymers have gained remarkable attention for bioremediation particularly in heavy metal removal and oil degradation due to their non-toxic nature and lack of secondary pollution. The exopolysaccharides (EPS) produced by the bacteria have become an important class of biopolymers that are employed in bioremediation. The bacteria isolated from the rhizospheric soil have higher metal tolerance and their EPS are effective in biosorption of heavy metals. Here, we report the characterization of an EPS (EPS-RN5) isolated from the root nodule-associated bacteria, Enterobacter cancerogenus strain YU16-RN5 and its heavy metal biosorption abilities. The bacteria isolated from the West coast of India was cultured in yeast extract mannitol (YEM) medium for EPS extraction and to study the production kinetics on a temporal scale. The biochemical composition, rheological properties and thermostability of EPS-RN5 was characterized by standard methods. The biosorption potential of EPS-RN5 against the selected heavy metals was analyzed by employing the inductively coupled plasma atomic emission spectroscopy (ICP-AES) technique. Further, cell culture experiments were used to test the role of EPS-RN5 in reducing the cytotoxicity exerted by the heavy metals in vitro using a human embryonic kidney cell line (HEK 293T). The bacteria showed good growth in YEM media and the maximum EPS yield was 1800 mg/L at 96 h. The molecular weight of EPS-RN5 was 0.7 × 106 Da and it contained 61.5% total sugars and 14.5% proteins. The monosaccharide composition of the EPS included glucose, sorbose and galactose in the ratio 0.25:0.07:1.0. The EPS-RN5 showed high thermal stability with a degradation temperature of 273 °C. Rheological analysis revealed the non-Newtonian behavior, with pseudoplastic characteristics. The EPS-RN5 efficiently absorbed cadmium and other heavy metals such as mercury, strontium, copper, arsenic, and uranium. In vitro studies revealed significant protective effect against the cadmium-induced cytotoxicity in HEK 293T cells. These results indicate the potential applications of EPS-RN5.
Collapse
Affiliation(s)
- Bythadka Erappa Dhanya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| | - Athmika
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| |
Collapse
|
6
|
Baker D, Basondwah S, Jambi E, Rahimuddin SA, Abuzaid M, Aly M. Molecular Identification, Characterization and Antioxidant Activities of Some Bacteria Associated with Algae in the Red Sea of Jeddah. Pak J Biol Sci 2020; 22:467-476. [PMID: 31930836 DOI: 10.3923/pjbs.2019.467.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Algae-associated bacteria produce secondary metabolites that have a great biological impact. The aim of this study was isolation, identification and evaluation the antioxidant activities of the associated bacteria of seven algae, Padina pavonica, Dictyota dichotoma, Cystoseira myrica, Halimeda opuntia, Ulva lactuca, Digenea simplex and Jania sp. The bacteria were isolated, characterized and identified. Identification was carried out using 16S rRNA gene sequencing. MATERIALS AND METHODS The identified bacteria were belonging to 6 families, Alteromonadaceae, Bacillaceae, Lactobacillaceae, Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae and 9 genera. The identified bacteria were belonging to genera, Alteromonas, Bacillus, Lysinibacillus Vibrio, Lactobacillus, Paracoccus, Leisingera, Pseudomonas and Pseudovibrio. The antioxidant activities of the bacterial ethyl acetate extracts was examined by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric Reducing Antioxidant Power) methods. RESULTS Out of the 17 isolated bacteria, Lactobacillus plantarum showed 95.7% free radical scavenging with EC50 = 17.7 μg mL-1, which is nearly similar to the positive control (Butylated Hydroxytoluene, BHT). The FRAP value of Lactobacillus extract was 2.00 mM ferric equivalent/mg of the extract. Phytochemical analysis of the bacterial extract revealed the presence of some secondary metabolites such as steroids, saponins, tannins, flavonoids, anthocyanin and betacyanin in all tested extracts. CONCLUSION The Red Sea algal associated bacteria have a great antioxidant potential that can be used in pharmaceutical industries.
Collapse
|
7
|
Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 2020; 151:268-277. [PMID: 32087227 DOI: 10.1016/j.ijbiomac.2020.02.206] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Lately, it has been proved that yeast exopolysaccharides (EPS) are potentially applicable biopolymers, a fact that has led to incremental needs for their assessment. The current study is based on the biochemical and molecular level identification of the novel cold-adapted yeast Rhodotorula mucilaginosa sp. GUMS16. Possible antioxidant and antiproliferative activities, as well as extraction and characterization of the GUMS16-produced EPS, were assessed during the course of this study. The results indicated that the strain of GUMS16 is a cold-adapted yeast with growth capability at 4 °C and an approximate EPS production yield of 28.5 g/L which are characterized as highly branched beta-D-glucan having glucose and mannose residues (85:15 mol%, respectively) with an average molecular weight of 84 kDa. In comparison to hyaluronic acid, DPPH, and OH, the scavenging activity attributed to the GUMS16-produced EPS was higher alongside being dose-dependent. The biocompatibility profile of the EPS was well-recognized based on its zero-cytotoxicity rate on a normal cell model. Collectively, the favorable properties of the EPS accentuate their potential as biocompatible compound suitable for subsequent pharmaceutical and industrial applications.
Collapse
|
8
|
Mirzaei Seveiri R, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A, Amani J. Characterization and Prospective Applications of the Exopolysaccharides Produced by Rhodosporidium babjevae. Adv Pharm Bull 2020; 10:254-263. [PMID: 32373494 PMCID: PMC7191244 DOI: 10.34172/apb.2020.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Due to the potential industrial and therapeutic applications of the yeast exopolysaccharides (EPSs), there has been an increasing demand to assess these biopolymers with improved characteristics. This study aimed to characterize the EPSs from Rhodosporidium babjevae (ATCC 90942 and IBRC-M 30088) as well as to evaluate their possible antioxidant, emulsifying and antiproliferative activities. Methods: Rhodosporidium babjevae was cultured for 5 days and following isolation of supernatant, EPSs precipitated with adding of cold absolute ethanol and freeze-dried. The EPSs chemical structure was determined by FT-IR, SEM, HPLC-SEC and GC-MS. Additionally the solubility, water holding capacity and emulsifying activity of EPSs were evaluated. In vitro, antioxidant activity was investigated against DPPH, superoxide and hydroxyl radicals. Finally the EPSs consequence on the cell proliferation of human breast adenocarcinoma (MCF-7) and Madin-Darby canine kidney (MDCK) cell lines was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: R. babjevae excreted 1.6±0.2 g/L of the EPSs. The EPSs had three fractions with molecular weights of 1.02 ×106 , 5×105 and 2×105 Da. Mannose and glucose were found as the main monosaccharides of the EPSs (84:16 mol%, respectively). The EPSs exhibited emulsifying activity on sun flower oil. The scavenging activities were found to be dose-dependent and higher than hyaluronic acid. Significant difference among the EPSs treatments on the proliferation of MCF-7 and MDCK cell lines was not observed (P>0.05). Conclusion: These results show the interesting potential of the EPSs from R. babjevae as biocompatible compounds for using in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Rasool Mirzaei Seveiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht, Iran
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Babak Rahmani
- Department of Molecular Medicine, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sina Darzi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Clément Brasselet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Fatemeh Karimitabar
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Razaghpoor
- Student Research Committee, Nursing and Midwifery Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Andrew M, Jayaraman G. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 2020; 487:107881. [DOI: 10.1016/j.carres.2019.107881] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|
10
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
11
|
Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar Drugs 2019; 17:E674. [PMID: 31795427 PMCID: PMC6950075 DOI: 10.3390/md17120674] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Marine-derived antioxidant polysaccharides have aroused extensive attention because of their potential nutritional and therapeutic benefits. However, the comprehensive comparison of identified marine-derived antioxidant polysaccharides is still inaccessible, which would facilitate the discovery of more efficient antioxidants from marine organisms. Thus, this review summarizes the sources, chemical composition, structural characteristics, and antioxidant capacity of marine antioxidant polysaccharides, as well as their protective in vivo effects mediated by antioxidative stress reported in the last few years (2013-2019), and especially highlights the dominant role of marine algae as antioxidant polysaccharide source. In addition, the relationships between the chemical composition and structural characteristics of marine antioxidant polysaccharides with their antioxidant capacity were also discussed. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree.
Collapse
Affiliation(s)
- Qiwu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| |
Collapse
|
12
|
Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, Gong X. Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12257-12263. [PMID: 31423792 DOI: 10.1021/acs.langmuir.9b02103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface stiffness plays a critical role in bacterial adhesion, but the mechanism is unclear since the bacterial motion before adhesion is overlooked. Herein, the three-dimensional (3D) motions of Escherichia coli and Pseudonomas sp. nov 776 onto poly(dimethylsiloxane) (PDMS) surfaces with varying stiffness before adhering were monitored by digital holographic microscopy (DHM). As Young's modulus (E) of the PDMS surface decreases from 278.1 to 3.4 MPa, the adhered E. coli and Pseudonomas sp. decrease in number by 40.4 and 34.9%, respectively. Atomic force microscopy (AFM) measurements show that the adhesion force of bacteria to the surface declines with the decreased surface stiffness. In contrast, a nontumbling mutant of adhered E. coli (HCB1414 with the adaptive function being partially deficient) decreases much less (by 18.4%). On the other hand, the tumble frequency (Ft) of E. coli HCB1 and flick frequency (Ff) of Pseudomonas sp. increase as the surface stiffness decreases, and the motion bias (Bθ) of Pseudomonas sp. also increases. These facts clearly indicate that the bacteria have adapted responses to the surface stiffness. RNA sequencing (RNA-seq) reveals that the downregulated Cph2 and CsrA as well as the upregulated GcvA of swimming E. coli HCB1 in bulk near the softer surface promote the bacterial motility.
Collapse
Affiliation(s)
- Qingmei Peng
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xin Zhou
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhi Wang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
13
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Zhao D, Xu XD, Yuan SS, Yan SJ, Wang XH, Luan SF, Yin JH. Fouling-resistant behavior of liquid-infused porous slippery surfaces. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1930-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|