1
|
Kumar A, Chang DW. Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. Polymers (Basel) 2024; 16:271. [PMID: 38257070 PMCID: PMC10819000 DOI: 10.3390/polym16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Conventional polymers, endowed with specific functionalities, are extensively utilized for filtering and extracting a diverse set of chemicals, notably metals, from solutions. The main structure of a polymer is an integral part for designing an efficient separating system. However, its chemical functionality further contributes to the selectivity, fabrication process, and resulting product morphology. One example would be a membrane that can be employed to selectively remove a targeted metal ion or chemical from a solution, leaving behind the useful components of the solution. Such membranes or products are highly sought after for purifying polluted water contaminated with toxic and heavy metals. An efficient water-purifying membrane must fulfill several requirements, including a specific morphology attained by the material with a specific chemical functionality and facile fabrication for integration into a purifying module Therefore, the selection of an appropriate polymer and its functionalization become crucial and determining steps. This review highlights the attempts made in functionalizing various polymers (including natural ones) or copolymers with chemical groups decisive for membranes to act as water purifiers. Among these recently developed membrane systems, some of the materials incorporating other macromolecules, e.g., MOFs, COFs, and graphene, have displayed their competence for water treatment. Furthermore, it also summarizes the self-assembly and resulting morphology of the membrane materials as critical for driving the purification mechanism. This comprehensive overview aims to provide readers with a concise and conclusive understanding of these materials for water purification, as well as elucidating further perspectives and challenges.
Collapse
Affiliation(s)
| | - Dong Wook Chang
- Department of Industrial Chemistry, ECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
2
|
Ji K, Liu C, He H, Mao X, Wei L, Zhou F, Sun R. Green-Solvent-Processable Composite Micro/Nanofiber Membrane with Gradient Asymmetric Structure for Efficient Microfiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207330. [PMID: 37078831 DOI: 10.1002/smll.202207330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Electrospinning technology has attracted extensive attention in recent decades and is widely used to prepare nanofiber membranes from hundreds of polymers. Polyvinyl formal acetal (PVFA), as a polymer with excellent properties such as high strength and heat resistance, is not reported on the electrospun water treatment membrane. In this paper, the preparation process of electrospun PVFA nanofiber membrane is optimized, and the effect of sodium chloride (NaCl) addition on the physical and mechanical properties and microfiltration performance of nanofiber membrane is also explored. And the hydrophobic PVFA nanofiber filter layer is then combined with a hydrophilic nonwoven support layer to construct a composite micro/nanofiber membrane with a pore-size gradient structure and a hydrophilic/hydrophobic asymmetric structure. Finally, unidirectional water transport and water treatment performance are further investigated. The results show that the tensile breaking strength of the composite membrane can reach up to 37.8 MPa, the retention rate for particles with the size of 0.1-0.3 µm is 99.7%, and the water flux is 513.4 L m-2 h-1 under the hydrostatic pressure. Moreover, it still has a retention of more than 98% after three repeated uses. Therefore, the electrospun PVFA composite membrane has a great potential in microfiltration.
Collapse
Affiliation(s)
- Keyu Ji
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, 214000, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
3
|
Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers (Basel) 2023; 15:polym15030741. [PMID: 36772042 PMCID: PMC9920505 DOI: 10.3390/polym15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of water purification, membrane separation technology plays a significant role. Electrospinning has emerged as a primary method to produce nanofiber membranes due to its straightforward, low cost, functional diversity, and process controllability. It is possible to flexibly control the structural characteristics of electrospun nanofiber membranes as well as carry out various membrane material combinations to make full use of their various properties, including high porosity, high selectivity, and microporous permeability to obtain high-performance water treatment membranes. These water separation membranes can satisfy the fast and efficient purification requirements in different water purification applications due to their high filtration efficiency. The current research on water treatment membranes is still focused on creating high-permeability membranes with outstanding selectivity, remarkable antifouling performance, superior physical and chemical performance, and long-term stability. This paper reviewed the preparation methods and properties of electrospun nanofiber membranes for water treatment in various fields, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and other special applications. Lastly, various antifouling technologies and research progress of water treatment membranes were discussed, and the future development direction of electrospun nanofiber membranes for water treatment was also presented.
Collapse
|
4
|
Merzougui C, Miao F, Liao Z, Wang L, Wei Y, Huang D. Electrospun nanofibers with antibacterial properties for wound dressings. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2165-2183. [PMID: 36001387 DOI: 10.1080/09205063.2022.2099662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The antibacterial nanofibers have been proposed as an interesting material for wound healing management, since the majority of traditional wound dressings exhibit issues and complications such as infection, pain, discomfort, and poor adhesive proprieties. It allows the organism's passage through the dressing and delay the wound healing progression. Electrospun nanofibers have been intensively investigated for wound dressings in tissue engineering applications due to their distinctive features and structural similarities to the extracellular matrix including the various available methods to load the antibacterial compounds onto the nanofiber webs. To construct an effective electrospun wound dressing, various efforts have been made to design different strategies to develop advanced polymers, such as employing synthetic and/or natural materials, modifying fiber orientation, and incorporating chemicals and metallic nanoparticles (NPs) as intriguing materials for antibacterial bandages. Thus, this review summarizes the relevant recent studies on the production of electrospun antibacterial nanofibers from a wide variety of polymers used in biomedical applications for wound dressings.
Collapse
Affiliation(s)
- Chaima Merzougui
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Ziming Liao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| |
Collapse
|
5
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
6
|
Peer P, Cvek M, Urbanek M, Sedlacik M. Preparation of electrospun magnetic polyvinyl butyral/
Fe
2
O
3
nanofibrous membranes for effective removal of iron ions from groundwater. J Appl Polym Sci 2020. [DOI: 10.1002/app.49576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Petra Peer
- Institute of Hydrodynamics of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Cvek
- Centre of Polymer Systems University Institute, Tomas Bata University in Zlin Zlin Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems University Institute, Tomas Bata University in Zlin Zlin Czech Republic
| | - Michal Sedlacik
- Centre of Polymer Systems University Institute, Tomas Bata University in Zlin Zlin Czech Republic
- Department of Production Engineering, Faculty of Technology Tomas Bata University in Zlin Zlin Czech Republic
| |
Collapse
|