1
|
Mao X, Lan Y, Lou F, Zhang Z, Jin Q, Jia Y, Li Y. Molecular understanding of transmembrane transport of mRNA carried by graphene oxide: Effect of membrane tension. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102826. [PMID: 40288623 DOI: 10.1016/j.nano.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
In recent years, graphene oxide (GO) has emerged as a promising nanocarrier for targeted mRNA delivery. However, the detailed molecular mechanisms governing its transmembrane transport remain poorly understood. Here, we employ molecular simulations to systematically investigate how membrane surface tension and binding configurations influence the transmembrane behavior of GO-mRNA nanocomplexes. Our findings reveal a membrane tension-dependent entry pathway that nanocomplex entry cell from adhesion/penetration to endocytosis, suggesting a potential mechanism for tumor cell drug resistance development. Furthermore, we demonstrate distinct transmembrane dynamics process for three predominant GO-mRNA binding modes, exhibiting variations in translocation velocity, penetration depth, and resultant membrane deformation. These computational insights provide crucial theoretical guidance for engineering optimized mRNA delivery carrier, potentially advancing the biomedical application of GO-based nanoplatforms in gene therapy and precision oncology.
Collapse
Affiliation(s)
- Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Lan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fangzhou Lou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qi Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuandi Jia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang XY, Shi XZ, Yu JY, Wang J, Zhao YM. Functionalized graphene oxide as a nanocarrier for delivering oridonin to improve anti-breast cancer cell activity. Biomed Chromatogr 2024; 38:e5943. [PMID: 38890009 DOI: 10.1002/bmc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 μg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jia-Yuan Yu
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| |
Collapse
|
3
|
Xu W, Fang W, Shi T, Ming X, Wang Y, Xie L, Peng L, Chen HT, Ying Y. Plasmonic Terahertz Devices and Sensors Based on Carbon Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12560-12569. [PMID: 36847242 DOI: 10.1021/acsami.2c22411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tunable terahertz (THz) photonic devices are imperative in a wide range of applications ranging from THz signal modulation to molecular sensing. One of the currently prevailing methods is based on arrays of metallic or dielectric resonators integrated with functional materials in response to an external stimulus, in which for the purpose of sensing the external stimuli may introduce inadvertent undesirable effects into the target samples to be measured. Here we developed an alternative approach by postprocessing nanothickness macro-assembled graphene (nMAG) films with widely tunable THz conductivity, enabling versatile solid-state THz devices and sensors, showing multifunctional nMAG-based applications. The THz conductivities of free-standing nMAGs showed a broad range from 1.2 × 103 S/m in reduced graphene oxide before annealing to 4.0 × 106 S/m in a nMAG film annealed at 2800 °C. We fabricated nMAG/dielectric/metal and nMAG/dielectric/nMAG THz Salisbury absorbers with broad reflectance ranging from 0% to 80%. The highly conductive nMAG films enabled THz metasurfaces for sensing applications. Taking advantage of the resonant field enhancement arising from the plasmonic metasurface structures and the strong interactions between analyte molecules and nMAG films, we successfully detected diphenylamine with a limit of detection of 4.2 pg. Those wafer-scale nMAG films present promising potential in high-performance THz electronics, photonics, and sensors.
Collapse
Affiliation(s)
- Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wenzhang Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Teng Shi
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Li Peng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hou-Tong Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
5
|
Gong P, Zhou Y, Li H, Zhang J, Wu Y, Zheng P, Jiang Y. Theoretical Study on the Aggregation and Adsorption Behaviors of Anticancer Drug Molecules on Graphene/Graphene Oxide Surface. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196742. [PMID: 36235277 PMCID: PMC9570551 DOI: 10.3390/molecules27196742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
Graphene and its derivatives are frequently used in cancer therapy, and there has been widespread interest in improving the therapeutic efficiency of targeted drugs. In this paper, the geometrical structure and electronic effects of anastrozole(Anas), camptothecin(CPT), gefitinib (Gefi), and resveratrol (Res) on graphene and graphene oxide(GO) were investigated by density functional theory (DFT) calculations and molecular dynamics (MD) simulation. Meanwhile, we explored and compared the adsorption process between graphene/GO and four drug molecules, as well as the adsorption sites between carriers and payloads. In addition, we calculated the interaction forces between four drug molecules and graphene. We believe that this work will contribute to deepening the understanding of the loading behaviors of anticancer drugs onto nanomaterials and their interaction.
Collapse
Affiliation(s)
| | | | | | | | - Yuying Wu
- Correspondence: (Y.W.); (P.Z.); (Y.J.)
| | | | | |
Collapse
|
6
|
Efficient detection of glucose by graphene-based non-enzymatic sensing material based on carbon dot. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Xu H, Cheng H, McClements DJ, Chen L, Long J, Jin Z. Enhancing the physicochemical properties and functional performance of starch-based films using inorganic carbon materials: A review. Carbohydr Polym 2022; 295:119743. [DOI: 10.1016/j.carbpol.2022.119743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
|
8
|
Zhao Y, Qin J, Wang S, Xu Z. Unraveling the morphological complexity of two-dimensional macromolecules. PATTERNS 2022; 3:100497. [PMID: 35755877 PMCID: PMC9214330 DOI: 10.1016/j.patter.2022.100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
2D macromolecules, such as graphene and graphene oxide, possess a rich spectrum of conformational phases. However, their morphological classification has only been discussed by visual inspection, where the physics of deformation and surface contact cannot be resolved. We employ machine learning methods to address this problem by exploring samples generated by molecular simulations. Features such as metric changes, curvature, conformational anisotropy and surface contact are extracted. Unsupervised learning classifies the morphologies into the quasi-flat, folded, crumpled phases and interphases using geometrical and topological labels or the principal features of the 2D energy map. The results are fed into subsequent supervised learning for phase characterization. The performance of data-driven models is improved notably by integrating the physics of geometrical deformation and topological contact. The classification and feature extraction characterize the microstructures of their condensed phases and the molecular processes of adsorption and transport, comprehending the processing-microstructures-performance relation in applications. Morphology of 2D macromolecules are classified into four phases Data-driven models capture physics and topology beyond the geometry Condensed-phase properties are understood by the features extracted
Resolving morphological complexity of macromolecules is the stepping stone to the design and fabrication of high-performance, multi-functional materials and to understanding the soft matter behaviors in biology and engineering. To extract the physics of lattice distortion and surface contact beyond the conformation is critical, yet challenging. Here, we show that, by labeling the simulation data using the 2D map of potential energies, the 3D geometry, and the topology of contact, morphological classification can be achieved with high accuracy. The well-trained model can be used to decipher the microstructural complexity using simulation or experimental data, which may include the geometrical representation only. This data-driven approach extracts the key geometrical and topological features of 2D macromolecules that are directly responsible for the material performance in relevant applications and can be extended to study other complex surfaces such as red blood cells and the brain.
Collapse
Affiliation(s)
- Yingjie Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Jianshu Qin
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Corresponding author
| |
Collapse
|
9
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Peng L, Han Y, Wang M, Cao X, Gao J, Liu Y, Chen X, Wang B, Wang B, Zhu C, Wang X, Cao K, Huang M, Cunning BV, Pang J, Xu W, Ying Y, Xu Z, Fang W, Lu Y, Ruoff RS, Gao C. Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104195. [PMID: 34622487 DOI: 10.1002/adma.202104195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/01/2021] [Indexed: 06/13/2023]
Abstract
A "cooling-contraction" method to separate large-area (up to 4.2 cm in lateral size) graphene oxide (GO)-assembled films (of nanoscale thickness) from substrates is reported. Heat treatment at 3000 °C of such free-standing macroscale films yields highly crystalline "macroassembled graphene nanofilms" (nMAGs) with 16-48 nm thickness. These nMAGs present tensile strength of 5.5-11.3 GPa (with ≈3 µm gauge length), electrical conductivity of 1.8-2.1 MS m-1 , thermal conductivity of 2027-2820 W m-1 K-1 , and carrier relaxation time up to ≈23 ps. As a demonstration application, an nMAG-based sound-generator shows a 30 µs response and sound pressure level of 89 dB at 1 W cm-2 . A THz metasurface fabricated from nMAG has a light response of 8.2% for 0.159 W mm-2 and can detect down to 0.01 ppm of glucose. The approach provides a straightforward way to form highly crystallized graphene nanofilms from low-cost GO sheets.
Collapse
Affiliation(s)
- Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Xiaoxue Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Junfeng Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Xianjue Chen
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Bin Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Bo Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chongyang Zhu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, P. R. China
| | - Ke Cao
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Benjamin V Cunning
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jintao Pang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
12
|
Liu Y, Sun Q, Su Y, Zhang X, Chen F, Zhang Z, Yang G. Morphological evolution of
self‐assembled PS‐g‐PA6
graft copolymer via in situ polymerization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Liu
- College of Chemical Engineering and Safety Binzhou University Binzhou China
- Wenjing College Yantai University Yantai China
| | - Qiquan Sun
- Technology Research Center Luye Pharma Group Yantai China
| | - Yinhe Su
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Xin Zhang
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Fei Chen
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Zhifei Zhang
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Guisheng Yang
- Research and Development Center Shanghai Genius Advanced Materials Co., Ltd Shanghai China
| |
Collapse
|
13
|
Liquid Crystalline Microdroplets of Graphene Oxide via Microfluidics. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2619-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Guo F, Wang Y, Jiang Y, Li Z, Xu Z, Zhao X, Guo T, Jiang W, Gao C. Hydroplastic Micromolding of 2D Sheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008116. [PMID: 33988260 DOI: 10.1002/adma.202008116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Indexed: 05/28/2023]
Abstract
Processing 2D sheets into desired structures with high precision is of great importance for fabrication and application of their assemblies. Solution processing of 2D sheets from dilute dispersions is a commonly used method but offers limited control over feature size precision owing to the extreme volume shrinkage. Plastic processing from the solid state is therefore a preferable approach to achieve high precision. However, plastic processing is intrinsically hampered by strong interlayer interactions of the 2D sheet solids. Here, a hydroplastic molding method to shape layered solids of 2D sheets with micrometer-scale precision under ambient conditions is reported. The dried 2D layered solids are plasticized by intercalated solvents, affording plastic near-solid compounds that enable local plastic deformation. Such an intercalated solvent-induced hydroplasticity is found in a broad family of 2D materials, for example graphene, MoS2 , and MXene. The hydroplastic molding enables fabrication of complex spatial structures (knurling, origami) and microimprinted tubular structures down to diameters of 390 nm with good fidelity. The method enhances the structural accuracy and enriches the structural diversity of 2D macroassemblies, thus providing a feasible strategy to tune their electrical, optical, and other functional properties.
Collapse
Affiliation(s)
- Fan Guo
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, 1 Guanghua Road, Nanjing, 210094, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yue Wang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, 1 Guanghua Road, Nanjing, 210094, P. R. China
| | - Yanqiu Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zeshen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 200123, China
| | - Tingbiao Guo
- Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, 1 Guanghua Road, Nanjing, 210094, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Graphene Industry and Engineering Research Institute, Xiamen University, No. 422 Siming Road, Xiamen, 361005, P. R. China
| |
Collapse
|