1
|
Li L, Duan Y. Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators. Polymers (Basel) 2023; 15:3690. [PMID: 37765543 PMCID: PMC10534950 DOI: 10.3390/polym15183690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have gained widespread attention as an energy storage solution. With the global demand for clean and sustainable energy, the social, economic, and environmental significance of LIBs is becoming more widely recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous membrane material, warrants significant research attention. Researchers have thus endeavored to develop innovative systems that enhance separator performance, fortify security measures, and address prevailing limitations. Herein, this review aims to furnish researchers with comprehensive content on battery separator membranes, encompassing performance requirements, functional parameters, manufacturing protocols, scientific progress, and overall performance evaluations. Specifically, it investigates the latest breakthroughs in porous membrane design, fabrication, modification, and optimization that employ various commonly used or emerging polymeric materials. Furthermore, the article offers insights into the future trajectory of polymer-based composite membranes for LIB applications and prospective challenges awaiting scientific exploration. The robust and durable membranes developed have shown superior efficacy across diverse applications. Consequently, these proposed concepts pave the way for a circular economy that curtails waste materials, lowers process costs, and mitigates the environmental footprint.
Collapse
Affiliation(s)
- Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Wu B, Zheng X, Xu W, Ren Y, Leng H, Liang L, Zheng D, Chen J, Jiang H. β-Nucleated Polypropylene: Preparation, Nucleating Efficiency, Composite, and Future Prospects. Polymers (Basel) 2023; 15:3107. [PMID: 37514497 PMCID: PMC10383444 DOI: 10.3390/polym15143107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The β-crystals of polypropylene have a metastable crystal form. The formation of β-crystals can improve the toughness and heat resistance of a material. The introduction of a β-nucleating agent, over many other methods, is undoubtedly the most reliable method through which to obtain β-PP. Furthermore, in this study, certain newly developed β-nucleating agents and their compounds in recent years are listed in detail, including the less-mentioned polymer β-nucleating agents and their nucleation characteristics. In addition, the various influencing factors of β-nucleation efficiency, including the polymer matrix and processing conditions, are analyzed in detail and the corresponding improvement measures are summarized. Finally, the composites and synergistic toughening effects are discussed, and three potential future research directions are speculated upon based on previous research.
Collapse
Affiliation(s)
- Bo Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
- The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xian Zheng
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
| | - Wenjie Xu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yanwei Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Haiqiang Leng
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
| | - Linzhi Liang
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
| | - De Zheng
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
| | - Jun Chen
- Guangdong Winner New Materials Technology Co., Ltd., Gaoming District, Foshan 528521, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
3
|
Investigation on the Structure and Performance of Polypropylene Sheets and Bi-axially Oriented Polypropylene Films for Capacitors. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al 2O 3 Coating Online Construction during the β-iPP Cavitation Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6714-6728. [PMID: 35089698 DOI: 10.1021/acsami.1c22080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-Al2O3 coating online construction during the β-iPP cavitation process. The middle layer composed of nano-Al2O3, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-Al2O3 coating hold optimized dimensional stability below the meltdown temperature. Crystal structure measurement and pore structure diagnosis disclose that nano-Al2O3 thins coarse fibrils and makes the porous structure uniform. De-bonding of nano-Al2O3/β-iPP interfaces retains nano-Al2O3 not only on the top surface of the separator but also on the pore intine to realize nano-Al2O3 coating online construction, consequently strengthening tensile capacity, dimensional stability to heating, and electrolyte affinity. Electrochemical tests further disclose that nano-Al2O3 coating stabilizes solid electrolyte interphase germination and heightens lithium-ion migration numbers, confining cell resistances and granting optimal high-rate performance and cycling ability. The proposed approach features simple technics, environment-friendly, continuous fabrication, and coating online construction, which can offer new ideas for the mass fabricating of the high-end separator.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
5
|
Liu L, Zhao Y, Zhang C, Dong Z, Wang K, Wang D. Morphological Characteristics of β-Nucleating Agents Governing the Formation of the Crystalline Structure of Isotactic Polypropylene. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunbo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiyuan Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kezhi Wang
- Shanxi Provincial Institute of Chemical Industry (Co., Ltd.), Taiyuan 030021, P. R. China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|