1
|
Huang J, Li Z, Yang L, Hu R, Shi G. A comprehensive DFT/TDDFT investigation into the influence of electron acceptors on the photophysical properties of ullazine-based D-π-A-π-A photosensitizers. Sci Rep 2025; 15:3101. [PMID: 39856238 PMCID: PMC11760367 DOI: 10.1038/s41598-025-87189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The type of electron acceptor group has a significant effect on the photovoltaic properties of solar cell sensitizers. In this study, on the basis of previous studies of the π1- and π2-linked groups of D-π1-A1-π2-A2-type sensitizers, the photoelectric properties of Ullazine-Based photosensitizing dyes were further optimized by adjusting the electron-absorbing groups at the A1 and A2 positions. DFT and TDDFT calculations revealed that substituting the A1 position with a BTD moiety led to a substantial increase in the light absorption capacity of the dye. Furthermore, the incorporation of a CSSH moiety at the A2 position resulted in a significant redshift of the absorption spectrum and a notable increase in the light trapping efficiency. Moreover, TDM analysis indicates that HOMO→LUMO is the predominant mode of transition in the S0→S1 exciton transition of the dye molecule on the basis of the BTD motif. This mode remains the dominant mode after the introduction of the CSSH motif, although its contribution is reduced. Notably, HJ19 (A1 for BTD, A2 for CSSH) and HJ20 (A1 for difluorosubstituted BTD, A2 for CSSH) dyes demonstrate optimal optoelectronic properties, exhibiting redshifted absorption wavelengths by more than 79 nm and enhanced maximum absorption efficiencies by more than 40% with those of the YZ7 sensitizer.
Collapse
Affiliation(s)
- Jing Huang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.
| | - Zihao Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China
| | - Lei Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China
| | - Rongfang Hu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China
| | - Guoyu Shi
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China
| |
Collapse
|
2
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 PMCID: PMC7616993 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Lin T, Hai Y, Luo Y, Feng L, Jia T, Wu J, Ma R, Dela Peña TA, Li Y, Xing Z, Li M, Wang M, Xiao B, Wong KS, Liu S, Li G. Isomerization of Benzothiadiazole Yields a Promising Polymer Donor and Organic Solar Cells with Efficiency of 19.0. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312311. [PMID: 38305577 DOI: 10.1002/adma.202312311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.
Collapse
Affiliation(s)
- Tao Lin
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Yulong Hai
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Yongmin Luo
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Lingwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Jia
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Yao Li
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Zengshan Xing
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Min Wang
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University (JHUN), Wuhan, 430056, China
| | - Kam Sing Wong
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU), Guangzhou, 510006, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
4
|
He J, Zhang D, Liu J, Yang L, Gao Y, Shao M. Polymerized-Small-Molecule Acceptors Featuring Siloxane-Terminated Side Chains for Mechanically Robust All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22294-22302. [PMID: 38634660 DOI: 10.1021/acsami.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Flexible and stretchable organic solar cells (OSCs) show great promise in wearable and stretchable electronic applications. However, current high-performance OSCs consisting of polymer donors (PDs) and small-molecule acceptors (SMAs) face significant challenges in achieving both high power conversion efficiency (PCE) and excellent stretch-ability. In this study, we synthesized a new polymerized-small-molecule acceptor (P-SMA) PY-SiO featuring siloxane-terminated side chains and compared its photovoltaic and mechanical performance to that of the reference PY-EH with ethylhexyl-terminated side chains. We found that the incorporation of siloxane-terminated side chains in PY-SiO enhanced the molecular aggregation and charge transport, leading to an optimized film morphology. The resultant of all-polymer solar cells (all-PSCs) based on PBDB-T/PY-SiO showed a higher PCE of 12.04% than the PY-EH-based one (10.85%). Furthermore, the siloxane-terminated side chains also increased the interchain distance and provided a larger free volume for chain rotation and reconfiguration, resulting in a higher film crack-onset strain (COS: 18.32% for PBDB-T/PY-SiO vs 11.15% for PBDB-T/PY-EH). Additionally, the PY-SiO-based stretchable all-PSCs exhibited an impressive PCE of 9.8% and retained >70% of its original PCE even under a substantial 20% strain, exceeding the performance of the PY-EH-based stretchable all-PSCs. Our result suggests the great potential of the siloxane-terminated side chain for achieving high-performance and stretchable OSCs.
Collapse
Affiliation(s)
- Jiayi He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yerun Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Nociarová J, Purkait A, Gyepes R, Hrobárik P. Silver-Catalyzed Skeletal Editing of Benzothiazol-2(3 H)-ones and 2-Halogen-Substituted Benzothiazoles as a Rapid Single-Step Approach to Benzo[1,2,3]thiadiazoles. Org Lett 2024; 26:619-624. [PMID: 38206052 DOI: 10.1021/acs.orglett.3c03904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A facile silver(I)-catalyzed reaction of benzothiazol-2(3H)-ones with NaNO2, or using AgNO2 directly, enables a single-step transformation to the corresponding benzo[1,2,3]thiadiazoles in moderate to excellent yields, with wide functional group compatibility. It can also be performed in a one-pot manner from readily available 2-halobenzothiazoles. This intriguing transformation involving an atom replacement in the S,N-heteroarene ring thus provides rapid access to isobenzothiadiazoles (while avoiding the usage of unstable precursors) and also expands the toolbox of modern skeletal editing reactions.
Collapse
Affiliation(s)
- Jela Nociarová
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Anisha Purkait
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Róbert Gyepes
- Faculty of Science, Charles University in Prague, Hlavova 2038/8, CZ-12843 Prague, Czech Republic
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| |
Collapse
|
6
|
Wang Y, Wang H, Deng J, Pan Y, Zheng Z, Ding X. Isoindigo-Based Dual-Acceptor Conjugated Polymers Incorporated Conjugation Length and Intramolecular Charge Transfer for High-Efficient Photothermal Conversion. Macromol Rapid Commun 2023; 44:e2300244. [PMID: 37465937 DOI: 10.1002/marc.202300244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Photothermal tumor therapy (PTT) and photoacoustic imaging (PA) have emerged as promising noninvasive diagnostic and therapeutic approaches for cancer treatment. However, the development of efficient PTT agents with high photostability and strong near-infrared (NIR) absorption remains challenging. This study synthesizes three isoindigo-based dual-acceptor conjugated polymers (CPs) (P-IIG-TPD, P-IIG-DPP, and P-IIG-EDOT-BT) via a green and nontoxic direct arylation polymerization (DArP) method and characterizes their optical, electrochemical, and NIR photothermal conversion properties. By incorporating two acceptors into the backbone, the resulting polymers exhibit enhanced photothermal conversion efficiency (PCE) due to improved synergy among conjugation length, planarity, and intramolecular charge transfer (ICT). The nanoparticles (NPs) of P-IIG-EDOT-BT and P-IIG-DPP have a uniform size distribution around 140 nm and exhibit remarkable NIR absorption at 808 nm. In addition, P-IIG-EDOT-BT and P-IIG-DPP NPs exhibit high PCEs of 62% and 78%, respectively. This study promotes the molecular design of CPs as NIR photothermal conversion materials and provides guidance for the development of novel dual-acceptor CPs for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongsen Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinni Deng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Xihua University, Chengdu, 610041, China
| | - Yi Pan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
7
|
Wang C, Fang J, Guan C, Wu T, Liu X, Liu F, Xiao C, Li W. Non-fused Polymerized Small-Molecule Acceptors with a Benzothiadiazole Core for All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13363-13370. [PMID: 36854711 DOI: 10.1021/acsami.2c21574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymerized small-molecule acceptors (PSMAs) have made significant progress as the application in all-polymer solar cells (all-PSCs). Most PSMAs are constructed by near-infrared fused-ring electron acceptors via Stille polymerization, such as Y-series acceptors. However, very limited non-fused electron acceptors with simplified synthetic complexity have been used in PSMAs. In this work, two non-fused PSMAs with a benzothiadiazole (BT) core are developed for application in all-PSCs. The S-O non-covalent interaction and the regioregularity have been introduced to improve the crystallinity and charge transport properties. As a result, a high-power conversion efficiency (PCE) of 11.42% with an enhanced photocurrent has been obtained in these regioregular PBTO-γ-based solar cells, representing the highest PCEs based on non-fused PSMAs. The encouraging results will intrigue more design of non-fused PSMAs toward high-performance all-PSCs.
Collapse
Affiliation(s)
- Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Chong Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ting Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoqing Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Cansu Ergun EG, Akbayrak M. Hunting black color via absorption engineering: EDOT and thiophene-benzothiadiazole based black-to-transmissive copolymer and its electrochromic device application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chen T, Ye F, Hu R, Tang BZ. Multicomponent Polymerizations of Isocyanides, Aldehydes, and 2-Aminopyridine toward Imidazo[1,2- a]pyridine-Containing Fused Heterocyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Ye
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
11
|
Kurbanoglu S, Cevher SC, Toppare L, Cirpan A, Soylemez S. Electrochemical biosensor based on three components random conjugated polymer with fullerene (C 60). Bioelectrochemistry 2022; 147:108219. [PMID: 35933973 DOI: 10.1016/j.bioelechem.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Herein, a conjugated polymer and fullerene bearing architecture-based electrochemical Tyrosinase (Tyr) enzyme inhibition biosensor for indomethacin (INDO) drug active compound has been developed. For this purpose, three moieties of benzoxadiazole, thienopyrroledione, and benzodithiophene containing conjugated polymer; poly[BDT-alt-(TP;BO)] was used as a transducer modifier together with fullerene for catechol detection. The specific combination of these materials is considered an effective way to fabricate highly sensitive and fast response catechol biosensors for the first time. Electrochemical and surface characteristics of the modified electrodes were obtained by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and atomic force microscopy. The effect of the parameters during chronoamperometric measurements on the biosensor response was also studied. Using optimized conditions, biosensing of catechol was achieved between 0.5 and 62.5 µM with a limit of the detection 0.11 µM. Tyr inhibition was followed with INDO drug active compound and it was found that INDO has a mixed type characteristic of enzyme kinetics with an I50 value of 15.11 µM.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sevki Can Cevher
- Department of Engineering Fundamental Sciences, Sivas University of Science and Technology, 58100 Sivas, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey; Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Ali Cirpan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey; The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara 06800, Turkey; Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
12
|
Synthesis and solar cell applications of semiconducting polymers based on vinylene-bridged 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole (FOBTzE). Polym J 2022. [DOI: 10.1038/s41428-022-00706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Liu SY, Wang D, Wen TJ, Zhou GQ, Zhu HM, Chen HZ, Li CZ. Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Liang S, Wang J, Ouyang Y, Tan WL, McNeill CR, Chen Q, Tang Z, Li W. Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Wang Y, Chen Q, Zhang G, Xiao C, Wei Y, Li W. Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5699-5708. [PMID: 35061370 DOI: 10.1021/acsami.1c18866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraflexible organic solar cells (OSCs) with both high power conversion efficiency (PCE) and good mechanical robustness are still challenging, in which flexible transparent composite electrodes (FTCEs, substrate-cum-electrodes) play critical roles. Here, an ultrathin FTCE (∼9 μm) via semi-embedding a silver nanowire electrode in a colorless polyimide (CPI) substrate was developed, which simultaneously possessed outstanding performance such as low square resistance (Rsq ∼ 12.7 Ω sq-1), high optical transmittance (T550 ∼ 86.3%), smooth surface (root-mean-square ∼ 0.32 nm), and excellent thermal, mechanical, and solution producing stability. Prior to the FTCE fabrication, four CPI samples with the number-average molecular weight ranging from 35.9 to 177.5 kDa were prepared and their optical, mechanical, and thermal properties were studied in detail. Moreover, the effect of the molecular weight on the minimum thickness that can withstand the following solution production of ultraflexible OSCs was investigated, which revealed that the molecular weight of CPI here should be above 81.4 kDa. Based on the FTCE, an ultraflexible OSC with a high PCE value of 14.37% and outstanding mechanical robustness was constructed, in which the PCE could still maintain above 96% of its initial value after 1000 bending cycles at a bending radius of 0.5 mm.
Collapse
Affiliation(s)
- Yongmei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Keshtov ML, Kuklin SA, Khokhlov AR, Xie Z, Alekseev VG, Dahiya H, Singhal R, Sharma GD. New medium bandgap donor D-A 1 -D-A 2 type Copolymers Based on Anthra[1,2-b: 4,3-b":6,7-c"'] Trithiophene-8,12-dione Groups for High -Efficient non -fullerene Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2100839. [PMID: 35040533 DOI: 10.1002/marc.202100839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Indexed: 11/09/2022]
Abstract
We synthesized a new acceptor unit anthra[1,2-b: 4,3-b': 6,7-c'']trithiophene-8,12-dione (А3Т) (A2) and then used it to design D-A1 -D-A2 medium bandgap donor copolymers with same thiophene (D) and A2 units but different A1 i.e., fluorinated benzothiadiazole (F-BTz) and benzothiadiazole (BTz) denoted as P130 and P131, respectively. Their detailed optical and electrochemical properties were examined. The copolymers show good solubility in common organic solvents, broad absorption in the visible spectral region from 300 nm to 700 nm, and deeper HOMO levels of -5.45 and -5.34 eV for P130 and P131, respectively. Finally, an optimized polymer solar cell based on P131 as the donor and narrow bandgap non-fullerene small molecule acceptor Y6 demonstrated a PCE of more than 11.13%. To further improve the efficiency of the non-fullerene PSC, we optimized the P130 by introducing a fluorine atom into the BTz unit, F-BTz acceptor unit, PCE PSC based on P130: Y6 active layer increased to more than 15.28 %, which is higher than that for non-fluorinated analog P131:Y6. The increase in the PCE for former PSC is attributed to the more crystalline nature and compact π-π stacking distance, leading to more balanced charge transport and reduced charge recombination. These remarkable results demonstrate that A3T-based copolymer P130 with F-BTz as the second acceptor is a promising donor material for high-performance PSCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- M L Keshtov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation
| | - S A Kuklin
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation
| | - A R Khokhlov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation
| | - Zh Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, Changchun, China
| | - V G Alekseev
- Analyticalchemistrydepartment, TverStateUniversity, Sadovyiper. 35, Tver, 170002, Russia
| | - Hemraj Dahiya
- Department of Physics, The LNM Institute for Information Technology, Jamdoli, 302031, India
| | - Rahul Singhal
- Department of Physics, Malviya National Institute of Technology, JLN Marg, 302017, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute for Information Technology, Jamdoli, 302031, India.,Deptartment of Electronics and Communication Engineering, The LNM Institute for Information Technology, Jamdoli, 302031, India
| |
Collapse
|
18
|
Wang D, Yang Z, Liu F, Xiao C, Wu Y, Li W. A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. MATERIALS 2021; 14:ma14113091. [PMID: 34200060 PMCID: PMC8200205 DOI: 10.3390/ma14113091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Abstract
Carbazole derivatives are the structural key of many biologically active substances, including naturally occurring and synthetic ones. Three novel (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene)hydrazinyl)triazole dyes were synthesized with different numbers of chlorine substituents attached at different locations. The presented research has shown the influence of the number and position of attachment of chlorine substituents on electrochemical, optical, nonlinear, and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.
Collapse
|