1
|
Jin XY, Ge Q, Cong H, Zhang YQ, Zhao JL, Jiang N. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. CHEMSUSCHEM 2023; 16:e202300027. [PMID: 36946375 DOI: 10.1002/cssc.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Indexed: 06/04/2023]
Abstract
Supercapacitors are essential for electrochemical energy storage because of their high-power density, good cycle stability, fast charging and discharging rates, and low maintenance cost. Macrocycles, including cucurbiturils, calixarene, and cyclodextrins, are cage-like organic compounds (with a nanocavity that contains O and N heteroatoms) with unique potential in supercapacitors. Here, we review the applications of macrocycles in supercapacitor systems, and we illustrate the merits of organic macrocycles in electrodes and electrolytes for improving the electrochemical double-layer capacitors and pseudocapacitance via supramolecular strategies. Then, the observed relationships between electrochemical performance and macrocyclic structures are introduced. This comprehensive review describes recent progress on macrocycle-block supercapacitors for researchers.
Collapse
Affiliation(s)
- Xian-Yi Jin
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Qingmei Ge
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Hang Cong
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, 519080, Guangdong, P. R. China
| | - Nan Jiang
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| |
Collapse
|
2
|
Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers (Basel) 2023; 15:polym15061341. [PMID: 36987122 PMCID: PMC10052156 DOI: 10.3390/polym15061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal–organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.
Collapse
|
3
|
Cui R, Li S, Yu C, Zhou Y. The Evolution of Hydrogen Bond Network in Nafion via Molecular Dynamics Simulation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Pathirana MA, Dissanayake NSL, Wanasekara ND, Mahltig B, Nandasiri GK. Chitosan-Graphene Oxide Dip-Coated Polyacrylonitrile-Ethylenediamine Electrospun Nanofiber Membrane for Removal of the Dye Stuffs Methylene Blue and Congo Red. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:498. [PMID: 36770459 PMCID: PMC9920196 DOI: 10.3390/nano13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 05/14/2023]
Abstract
Textile wastewater accommodates many toxic organic contaminants that could potentially threaten the ecosystem if left untreated. Methylene blue is a toxic, non-biodegradable, cationic dye that is reportedly observed in significant amounts in the textile effluent stream as it is widely used to dye silk and cotton fabrics. Congo red is a carcinogenic anionic dye commonly used in the textile industry. This study reports an investigation of methylene blue and Congo red removal using a chitosan-graphene oxide dip-coated electrospun nanofiber membrane. The fabricated nanocomposite was characterized using Scanning Electron Microscopy (SEM), FT-IR Spectroscopy, Raman Spectroscopy, UV-vis Spectroscopy, Drop Shape Analyzer, and X-ray Diffraction. The isotherm modeling confirmed a maximum adsorptive capacity of 201 mg/g for methylene blue and 152 mg/g for Congo red, which were well fitted with a Langmuir isotherm model indicating homogenous monolayer adsorption.
Collapse
Affiliation(s)
- Maadri A. Pathirana
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein—University of Applied Sciences, 47707 Krefeld, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| |
Collapse
|
5
|
Active Packaging Material Based on Immobilized Diatomaceous Earth/Zinc Oxide/High-Density Polyethylene Composite for Sea Food and Products. Polymers (Basel) 2022; 14:polym14235228. [PMID: 36501622 PMCID: PMC9739206 DOI: 10.3390/polym14235228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
One of the key factors of supporting the rapidly expanding seafood product industry in terms of quality control is the utilization of active packaging materials. Microorganisms are primarily responsible for the perishability and rapid disintegration of seafood. The incorporation of an inorganic compound, such as silica-based diatomaceous earth (DE), and a metal oxide, such as zinc oxide (ZnO), is proposed to develop active packaging materials with excellent antibacterial activity, minimized fishy odor, and brittleness at subzero temperatures. The mechanical, morphological, and physicochemical properties of these materials were investigated. The results show that the addition of DE/ZnO improved the antibacterial activity of high-density polyethylene (HDPE) samples by up to approximately 95% against both gram-positive and -negative bacteria. Additionally, it enhanced the Izod strength and stability at subzero temperatures of the samples. The odor evaporation test revealed that trimethylamine can be minimized in proportion to increasing DE/ZnO composite concentration. As a result, the development of active packaging materials from DE/ZnO composites is an emerging polymeric packaging technology for seafood products, wherein packaging and seafood quality are linked.
Collapse
|
6
|
Biliuta G, Bostănaru-Iliescu AC, Mareș M, Pavlov-Enescu C, Năstasă V, Burduniuc O, Coseri S. Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices. Molecules 2022; 27:molecules27196680. [PMID: 36235217 PMCID: PMC9573117 DOI: 10.3390/molecules27196680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to synthesize silver nanoparticles (AgNPs) using cellulose derivatives and to evaluate their antimicrobial potential. As effective reducing and stabilizing agents for AgNPs, cellulose derivatives, such as hydroxypropyl cellulose (HPC), methylcellulose (MC), ethylcellulose (EC), and cellulose acetate (CA), were used. Their ability to reduce silver ions as well as the size of the resulting AgNPs were compared. The formation and stability of the reduced AgNPs in the solution were monitored using UV-Vis analysis. The size, morphology, and charge of the AgNPs were evaluated. We found that, when using cellulosic derivatives, AgNPs with sizes ranging from 17 to 89 nm and different stabilities were obtained. The parameters, such as size and ζ potential indicate the stability of AgNPs, with AgNPs-CA and AgNPs-HPC being considered more stable than AgNPs-EC and AgNPs-MC since they show higher ζ potential values. In addition, the AgNPs showed antimicrobial activity against all reference strains and clinical isolates. MIC values between 0.0312 and 0.125 mM had a bactericidal effect on both Gram-positive and Gram-negative bacteria. The fungicidal effect was obtained at a MIC value of 0.125 mM. These results may provide rational support in the design of medical gauze products, including gauze pads, rolls, and sponges.
Collapse
Affiliation(s)
- Gabriela Biliuta
- Polyaddition and Photochemistry Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Andra-Cristina Bostănaru-Iliescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
- Correspondence: (A.-C.B.-I.); (S.C.); Tel.: +40-232-217454 (S.C.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Carla Pavlov-Enescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Valentin Năstasă
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Olga Burduniuc
- Discipline of Microbiology and Immunology, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, 2001 Chisinau, Moldova
- Departament of the Laboratory Diagnosis in Public Health, National Agency for Public Health, 67A Gheorghe Asachi, 2028 Chisinau, Moldova
| | - Sergiu Coseri
- Polyaddition and Photochemistry Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence: (A.-C.B.-I.); (S.C.); Tel.: +40-232-217454 (S.C.)
| |
Collapse
|