1
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Li W, Huang X, Han X, Zhang J, Gao L, Chen H. IL-17A in gastric carcinogenesis: good or bad? Front Immunol 2024; 15:1501293. [PMID: 39676857 PMCID: PMC11638189 DOI: 10.3389/fimmu.2024.1501293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Cytokines, which are important to the tumor microenvironment (TME), play critical roles in tumor development, metastasis, and immune responses. Interleukin-17(IL-17) has emerged as a key biomarker in many malignancies; however, its precise involvement in gastric cancer is less fully understood. Elevated levels of IL-17 have been observed in stomach diseases such as Helicobacter pylori infection and autoimmune gastritis, indicating that a sustained Th17 response may precede the development of gastric cancer. While IL-17 is related to inflammatory processes that may lead to cancer, its specific influence on gastric cancer development and therapy needs to be completely understood. Specifically, the release of IL-17A by diverse immune cells has been associated with both tumor development and inhibition in gastric cancer. It may impact tumor development through mechanisms such as boosting cell proliferation, inducing angiogenesis, and enabling immune cell recruitment or, conversely, suppressing tumor growth via the activation of anti-tumor immune responses. The dual role of IL-17 in cancer, along with its various effects depending on the TME and immune cell composition, highlights the complexity of its activity. Current research reveals that although IL-17 might serve as a target for immunotherapy, its therapeutic potential is hindered by its various activities. Some studies have shown that anti-IL-17 drugs may be helpful, especially when paired with immune checkpoint inhibitors, whereas others point to concerns about the validity of IL-17 in gastric cancer therapy. The lack of clinical trials and the heterogeneity of human tumors underscore the necessity for individualized treatment approaches. Further studies are needed to identify the specific mechanisms of IL-17 in gastric cancer and to design targeted therapeutics appropriately.
Collapse
Affiliation(s)
- Weidong Li
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaodong Huang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowen Han
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiayi Zhang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Lamberti G, Panzuto F, Pavel M, O'Toole D, Ambrosini V, Falconi M, Garcia-Carbonero R, Riechelmann RP, Rindi G, Campana D. Gastric neuroendocrine neoplasms. Nat Rev Dis Primers 2024; 10:25. [PMID: 38605021 DOI: 10.1038/s41572-024-00508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Gastric neuroendocrine neoplasms (gNENs) display peculiar site-specific features among all NENs. Their incidence and prevalence have been rising in the past few decades. gNENs comprise gastric neuroendocrine carcinomas (gNECs) and gastric neuroendocrine tumours (gNETs), the latter further classified into three types. Type I anatype II gNETs are gastrin-dependent and develop in chronic atrophic gastritis and as part of Zollinger-Ellison syndrome within a multiple endocrine neoplasia type 1 syndrome (MEN1), respectively. Type III or sporadic gNETs develop in the absence of hypergastrinaemia and in the context of a near-normal or inflamed gastric mucosa. gNECs can also develop in the context of variable atrophic, relatively normal or inflamed gastric mucosa. Each gNEN type has different clinical characteristics and requires a different multidisciplinary approach in expert dedicated centres. Type I gNETs are managed mainly by endoscopy or surgery, whereas the treatment of type II gNETs largely depends on the management of the concomitant MEN1. Type III gNETs may require both locoregional approaches and systemic treatments; NECs are often metastatic and therefore require systemic treatment. Specific data regarding the systemic treatment of gNENs are lacking and are derived from the treatment of intestinal NETs and NECs. An enhanced understanding of molecular and clinical pathophysiology is needed to improve the management and outcomes of patients' gNETs.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Digestive Disease Unit, Sant'Andrea University Hospital, ENETS Center of Excellence, Rome, Italy
| | - Marianne Pavel
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dermot O'Toole
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
- Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Falconi
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rocio Garcia-Carbonero
- Medicine Department, Universidad Complutense de Madrid, Madrid, Spain
- Oncology Department, Hospital Universitario 12 de Octubre, Imas12, Madrid, Spain
| | | | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, ENETS Center of Excellence, Rome, Italy
| | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Iwamuro M, Tanaka T, Otsuka M. Update in Molecular Aspects and Diagnosis of Autoimmune Gastritis. Curr Issues Mol Biol 2023; 45:5263-5275. [PMID: 37504250 PMCID: PMC10378041 DOI: 10.3390/cimb45070334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Recent studies have advanced our understanding of the pathophysiology of autoimmune gastritis, particularly its molecular aspects. The most noteworthy recent advancement lies in the identification of several candidate genes implicated in the pathogenesis of pernicious anemia through genome-wide association studies. These genes include PTPN22, PNPT1, HLA-DQB1, and IL2RA. Recent studies have also directed attention towards other genes such as ATP4A, ATP4B, AIRE, SLC26A7, SLC26A9, and BACH2 polymorphism. In-depth investigations have been conducted on lymphocytes and cytokines, including T helper 17 cells, interleukin (IL)-17A, IL-17E, IL-17F, IL-21, IL-19, tumor necrosis factor-α, IL-15, transforming growth factor-β1, IL-13, and diminished levels of IL-27. Animal studies have explored the involvement of roseolovirus and H. pylori in relation to the onset of the disease and the process of carcinogenesis, respectively. Recent studies have comprehensively examined the involvement of autoantibodies, serum pepsinogen, and esophagogastroduodenoscopy in the diagnosis of autoimmune gastritis. The current focus lies on individuals demonstrating atypical presentations of the disease, including those diagnosed in childhood, those yielding negative results for autoantibodies, and those lacking the typical endoscopic characteristics of mucosal atrophy. Here, we discuss the recent developments in this field, focusing on genetic predisposition, epigenetic modifications, lymphocytes, cytokines, oxidative stress, infectious agents, proteins, microRNAs, autoantibodies, serum pepsinogen, gastrin, esophagogastroduodenoscopy and microscopic findings, and the risk of gastric neoplasm.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Li H, He W, Wang T, Cui C, Zhang J, Chen X. Comparative transcriptome analysis revealed genes involved in the sexual size dimorphisms and expressed sequence tag-Simple Sequence Repeat loci validation in Odorrana graminea. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1159037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Sexual size dimorphism (SSD) is widespread among animals and is characterized by differences in body size between sexes. Previous studies suggested SSD might reflect the adaptations of particular sexes to their specific reproductive or ecological roles. The large green cascade frogs (Odorrana graminea) exhibit obvious SSD that females are nearly twice the body size of males. However, the molecular mechanisms underlying SSD of O. graminea are still unknown. In the present study, we first obtained nearly 5 Gb of the transcriptome data through Illumina sequencing, and the de novo transcriptome assembly produced 189,868 unigenes of O. graminea. A total of 774 significantly sex-differentially expressed genes (DEGs) were identified. Of which, 436 DEGs showed significantly higher expression levels in females than those in males, whereas 338 DEGs showed significantly lower expression in females than those in males. We also found 10 sex-differentially expressed genes related to energy metabolism between sexes of O. graminea, and these DEGs were related to the estrogen signaling pathway, oxidative phosphorylation, fatty acid biosynthesis, gastric acid secretion, and nitrogen metabolism. We found that the differences in energy metabolism and steroid hormone synthesis might be the main driving force leading to the sexual growth dimorphism of O. graminea. In addition, a total of 63,269 potential EST-SSR loci and 4,669 EST-SSR loci were detected and validated in different populations of O. graminea and other species within Odorrana. The assembled transcriptome will facilitate functional genomic studies of O. graminea and the developed EST-SSR markers will contribute to the population genetics of the species within Odorrana. The sex-differentially expressed genes involved in energy metabolism might provide insights into the genetic mechanisms underlying the SSD of O. graminea.
Collapse
|
7
|
Polyakova V, Bodunova N, Rumyantsev K, Khatkov I, Bordin D, Bilyalov A, Sviridov P, Yanova T. Genetic Determinants of Autoimmune Gastritis. BIONANOSCIENCE 2023; 13:322-329. [DOI: 10.1007/s12668-023-01068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
|
8
|
Torres J, Touati E. Mitochondrial Function in Health and Disease: Responses to Helicobacter pylori Metabolism and Impact in Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:53-81. [PMID: 38231215 DOI: 10.1007/978-3-031-47331-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Mitochondria are major cellular organelles that play an essential role in metabolism, stress response, immunity, and cell fate. Mitochondria are organized in a network with other cellular compartments, functioning as a signaling hub to maintain cells' health. Mitochondrial dysfunctions and genome alterations are associated with diseases including cancer. Mitochondria are a preferential target for pathogens, which have developed various mechanisms to hijack cellular functions for their benefit. Helicobacter pylori is recognized as the major risk factor for gastric cancer development. H. pylori induces oxidative stress and chronic gastric inflammation associated with mitochondrial dysfunction. Its pro-apoptotic cytotoxin VacA interacts with the mitochondrial inner membrane, leading to increased permeability and decreased ATP production. Furthermore, H. pylori induces mitochondrial DNA damage and mutation, concomitant with the development of gastric intraepithelial neoplasia as observed in infected mice. In this chapter, we present diverse aspects of the role of mitochondria as energy supplier and signaling hubs and their adaptation to stress conditions. The metabolic activity of mitochondria is directly linked to biosynthetic pathways. While H. pylori virulence factors and derived metabolites are essential for gastric colonization and niche adaptation, they may also impact mitochondrial function and metabolism, and may have consequences in gastric pathogenesis. Importantly, during its long way to reach the gastric epithelium, H. pylori faces various cellular types along the gastric mucosa. We discuss how the mitochondrial response of these different cells is affected by H. pylori and impacts the colonization and bacterium niche adaptation and point to areas that remain to be investigated.
Collapse
Affiliation(s)
- Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatriıa, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Eliette Touati
- Equipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, F-75015, Paris, France.
| |
Collapse
|
9
|
Han L, Shu X, Wang J. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Front Microbiol 2022; 13:811258. [PMID: 35211104 PMCID: PMC8860906 DOI: 10.3389/fmicb.2022.811258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is considered to be a type of gastrointestinal tumor and is mostly accompanied by Helicobacter pylori (HP) infection at the early stage. Hence, the long-term colonization of the gastric mucosa by HP as a causative factor for gastrointestinal diseases cannot be ignored. The virulence factors secreted by the bacterium activate the signaling pathway of oxidative stress and mediate chronic inflammatory response in the host cells. The virulence factors also thwart the antibacterial effect of neutrophils. Subsequently, DNA methylation is induced, which causes continuous cell proliferation and evolution toward low-grade-differentiated gastric cells. This process provides the pathological basis for the occurrence of progressive gastric cancer. Therefore, this review aims to summarize the oxidative stress response triggered by HP in the gastric mucosa and the subsequent signaling pathways. The findings are expected to help in the formulation of new targeted drugs for preventing the occurrence of early gastric cancer and its progression to middle and advanced cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Abstract
Purpose of Review Gastric neuroendocrine neoplasms (g-NENs) are a rare type of stomach cancer. The three main subtypes have different pathogeneses, biological behaviours and clinical characteristics, so they require different management strategies. This article will provide an overview of g-NENs and highlight recent advances in the field. Recent Findings Molecular profiling has revealed differences between indolent and aggressive g-NENs, as well as a new somatic mutation responsible for some familial type I g-NENs. Novel biomarkers have been developed which will hopefully improve diagnosis, treatment, risk stratification and follow-up. Patient treatment is also changing, as evidence supports the use of less aggressive options (e.g. endoscopic surveillance or resection) in some patients with more indolent tumours. Summary g-NEN heterogeneity poses challenges in understanding and managing this rare disease. More basic science research is needed to investigate molecular pathogenesis, and future larger clinical studies will hopefully also further improve treatment and patient outcomes.
Collapse
|
11
|
Tong Y, Jing M, Zhao X, Liu H, Wei S, Li R, Liu X, Wang M, Song H, Zhao Y. Metabolomic Study of Zuojin Pill in Relieving 1-Methyl-3-nitro-1-nitrosoguanidine-Induced Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7004798. [PMID: 34956382 PMCID: PMC8709764 DOI: 10.1155/2021/7004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
The classic prescription Zuojin Pill (ZJP) shows a good therapeutic effect on chronic atrophic gastritis (CAG); it is of great significance to clarify its specific mechanism. Therefore, we explore the mechanism of ZJP on MNNG-induced CAG by integrating approaches. First of all, through the pathological changes of gastric tissue and the expression level of PGI and PGI/II in serum, the expression of inflammation-related factors was determined by RT-PCR to determine the efficacy. Then, UPLC-Q-TOF/MS was used for plasma and urine metabolomic analysis to screen the specific potential biomarkers and metabolic pathway of ZJP in ameliorating CAG and to explore its possible mechanism. ZJP significantly ameliorate the pathological injury of gastric tissue, increase levels of PGI and PGI/II, and reduce the expression level of proinflammatory factors. Through metabolomic analysis, 9 potential metabolic differences were identified and 6 related metabolic pathways were enriched. These findings indicate for the first time the potential mechanism of ZJP in improving CAG induced by MNNG and are of great significance to the clinical development and application of ZJP-related drugs.
Collapse
Affiliation(s)
- Yuling Tong
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Honghong Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital of Chinese, Beijing, China
| | - Xia Liu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Hongtao Song
- Department of Pharmacy, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Calvete O, Reyes J, Valdés-Socin H, Martin P, Marazuela M, Barroso A, Escalada J, Castells A, Torres-Ruiz R, Rodríguez-Perales S, Currás-Freixes M, Benítez J. Alterations in SLC4A2, SLC26A7 and SLC26A9 Drive Acid-Base Imbalance in Gastric Neuroendocrine Tumors and Uncover a Novel Mechanism for a Co-Occurring Polyautoimmune Scenario. Cells 2021; 10:3500. [PMID: 34944008 PMCID: PMC8700745 DOI: 10.3390/cells10123500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Autoimmune polyendocrine syndrome (APS) is assumed to involve an immune system malfunction and entails several autoimmune diseases co-occurring in different tissues of the same patient; however, they are orphans of its accurate diagnosis, as its genetic basis and pathogenic mechanism are not understood. Our previous studies uncovered alterations in the ATPase H+/K+ Transporting Subunit Alpha (ATP4A) proton pump that triggered an internal cell acid-base imbalance, offering an autoimmune scenario for atrophic gastritis and gastric neuroendocrine tumors with secondary autoimmune pathologies. Here, we propose the genetic exploration of APS involving gastric disease to understand the underlying pathogenic mechanism of the polyautoimmune scenario. The whole exome sequencing (WES) study of five autoimmune thyrogastric families uncovered different pathogenic variants in SLC4A2, SLC26A7 and SLC26A9, which cotransport together with ATP4A. Exploratory in vitro studies suggested that the uncovered genes were involved in a pathogenic mechanism based on the alteration of the acid-base balance. Thus, we built a custom gene panel with 12 genes based on the suggested mechanism to evaluate a new series of 69 APS patients. In total, 64 filtered putatively damaging variants in the 12 genes of the panel were found in 54.17% of the studied patients and none of the healthy controls. Our studies reveal a constellation of solute carriers that co-express in the tissues affected with different autoimmune diseases, proposing a unique genetic origin for co-occurring pathologies. These results settle a new-fangled genetics-based mechanism for polyautoimmunity that explains not only gastric disease, but also thyrogastric pathology and disease co-occurrence in APS that are different from clinical incidental findings. This opens a new window leading to the prediction and diagnosis of co-occurring autoimmune diseases and clinical management of patients.
Collapse
Affiliation(s)
- Oriol Calvete
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (P.M.); (A.B.)
- Network of Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Grupo Español de Tumores Neuroendocrinos y Endocrinos (GETNE), 28054 Madrid, Spain;
| | - José Reyes
- Grupo Español de Tumores Neuroendocrinos y Endocrinos (GETNE), 28054 Madrid, Spain;
- Department of Gastroenterology, Hospital Comarcal de Inca, 07300 Inca, Spain
- Health Investigation Institute (IDISBA), 07120 Palma de Mallorca, Spain
| | - Hernán Valdés-Socin
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium;
| | - Paloma Martin
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (P.M.); (A.B.)
- Network of Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mónica Marazuela
- Hospital la Princesa, Instituto de Investigación Princesa, University Autónoma of Madrid, 28006 Madrid, Spain;
| | - Alicia Barroso
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (P.M.); (A.B.)
| | - Javier Escalada
- Endocrinology and Nutrition Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Antoni Castells
- Hospital Clinic of Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, 08036 Barcelona, Spain;
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (R.T.-R.); (S.R.-P.)
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (R.T.-R.); (S.R.-P.)
| | - María Currás-Freixes
- Endocrinology and Nutrition Department, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (P.M.); (A.B.)
- Network of Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
13
|
Park JM, Han YM, Oh JY, Lee DY, Choi SH, Hahm KB. Transcriptome profiling implicated in beneficiary actions of kimchi extracts against Helicobacter pylori infection. J Clin Biochem Nutr 2021; 69:171-187. [PMID: 34616109 PMCID: PMC8482382 DOI: 10.3164/jcbn.20-116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary intervention to prevent Helicobacter pylori (H. pylori)-gastric cancer might be ideal because of no risk of bacterial resistance, safety, and rejuvenating action of atrophic gastritis. We have published data about the potential of fermented kimchi as nutritional approach for H. pylori. Hence recent advances in RNAseq analysis lead us to investigate the transcriptome analysis to explain these beneficiary actions of kimchi. gastric cells were infected with either H. pylori or H. pylori plus kimchi. 943 genes were identified as significantly increased or decreased genes according to H. pylori infection and 68 genes as significantly changed between H. pylori infection and H. pylori plus kimchi (p<0.05). Gene classification and Medline database showed DLL4, FGF18, PTPRN, SLC7A11, CHAC1, FGF21, ASAN, CTH, and CREBRF were identified as significantly increased after H. pylori, but significantly decreased with kimchi and NEO1, CLDN8, KLRG1, and IGFBP1 were identified as significantly decreased after H. pylori, but increased with kimchi. After KEGG and STRING-GO analysis, oxidative stress, ER stress, cell adhesion, and apoptosis genes were up-regulated with H. pylori infection but down-regulated with kimchi, whereas tissue regeneration, cellular anti-oxidative response, and anti-inflammation genes were reversely regulated with kimchi (p<0.01). Conclusively, transcriptomes of H. pylori plus kimchi showed significant biological actions.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daejeon, 34520, Korea
| | - Young Min Han
- Seoul Center, Korea Basic Science Institute, Seoul, 02456, Korea
| | - Ji Young Oh
- CJ Food Research Center, Suwon, 16471, Korea
| | | | | | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, 13497, Korea
- Medpacto Research Institute, Medpacto, Seoul, 06668, Korea
| |
Collapse
|
14
|
Calvete O, Reyes J, Benítez J. Case Report: CMV Infection and Same Mechanism-Originated Intestinal Inflammation Compatible With Bowel/Crohn's Disease Is Suggested in ATP4A Mutated-Driven Gastric Neuroendocrine Tumors. Front Med (Lausanne) 2021; 8:553110. [PMID: 33889580 PMCID: PMC8055817 DOI: 10.3389/fmed.2021.553110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations in the ATP4A proton pump prevent gastric acidification and explain the chronic autoimmune gastritis scenario that conducts the gastric neuroendocrine tumor (gNET) formation. Here, we wanted to investigate the co-occurrence cytomegalovirus (CMV) infection and intestinal inflammation that presented all members of a family affected with gNET and carrying an ATP4A mutation. Intestinal inflammation persisted after CMV eradication and anemia treatment. The inflammation was compatible with a ileitis/Crohn's disease and was originated by the same autoimmune mechanism described in the tumorigenesis of gNETS. The same secondary disease but no the CMV infection was observed in all members affected with gNET and carrying the ATP4A mutation. Our results suggest that the ATP4A malfunction not only explained gNETs but also the co-occurring disease and opportunistic infections, which allowed to link autoimmune pathologies and gNETs in a unique mechanism. Our results open a new window to better understand not only gastric neoplasms formation but the co-occurring autoimmune disorders and the inflammatory mechanism that compose a premalignant scenario for other tumor formation. Our findings are important since contribute to describe the genetic landscape of the Inflammatory Bowel/Crohn's disease and alert clinicians to monitor patients with gastric neoplasms mediated by achlorhydria mechanisms for concomitant secondary pathologies.
Collapse
Affiliation(s)
- Oriol Calvete
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,Network of Research on Rare Diseases (CIBERER), Madrid, Spain.,Grupo Español de Tumores Neuroendocrinos y Endocrinos, Madrid, Spain
| | - José Reyes
- Grupo Español de Tumores Neuroendocrinos y Endocrinos, Madrid, Spain.,Department of Gastroenterology, Hospital Comarcal de Inca, Balearic Islands Health Investigation Institute (IDISBA), Majorca, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,Network of Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
15
|
Li YL, Qiu XD, Chen J, Zhang Y, Li J, Xu JM, Wang C, Qi ZR, Luo J, Tan HY. Clinicopathological characteristics and prognosis of 77 cases with type 3 gastric neuroendocrine tumours. World J Gastrointest Oncol 2020; 12:1416-1427. [PMID: 33362912 PMCID: PMC7739150 DOI: 10.4251/wjgo.v12.i12.1416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For the rarity of type 3 gastric neuroendocrine tumours (g-NETs), their clinicopathological characteristics and prognosis are not well illustrated. AIM To describe the clinicopathological features and outcome of type 3 g-NETs in the Chinese population. METHODS Based on the 2019 WHO pathological classification, the clinicopathological characteristics and prognosis of patients with type 3 g-NETs in China were retrospectively analysed. RESULTS A total of 77 patients (55.8% of females) with type 3 g-NETs were analysed, with a median age of 48 years (range: 28-79 years). The tumours were mainly located in the gastric fundus/body (83.1%) and were mostly solitary (83.1%), with a median size of 1.5 cm (0.8-3.5 cm). Of these, there were 37 G1 tumours (48.1%), 31 G2 (40.3%), and 9 G3 (11.7%). Ten (13.0%) and 24 (31.2%) patients had lymph node and distant metastasis, respectively. In addition, type 3 g-NETs were heterogeneous. Compared with G1 NETs, G2 NETs had a higher lymph node metastasis rate, and G3 NETs had a higher distant metastasis rate. G1 and G2 NETs with stage I/II disease (33/68) received endoscopic treatment, and no tumour recurrence or tumour-related death was observed within a median follow-up time of 36 mo. Grade and distant metastasis were identified to be independent risk factors for prognosis in multivariable analysis. CONCLUSION Type 3 g-NETs are obviously heterogeneous, and the updated WHO 2019 pathological classification may be used to effectively evaluate their biological behaviors and prognosis. Also, endoscopic treatment should be considered for small (< 2 cm), low grade, superficial tumours.
Collapse
Affiliation(s)
- Yuan-Liang Li
- Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xu-Dong Qiu
- Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Jie Li
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Beijing Cancer Hospital, Beijing 100037, China
| | - Jian-Ming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Chao Wang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhi-Rong Qi
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Huang-Ying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Gastroesophageal neuroendocrine neoplasms (NENs) are a rare entity. Recent 2019 WHO classifications reflect our understanding of tumor biology, namely, that distinct molecular characteristics underline tumor behavior and prognosis. Here, we reviewed the evidence for linking molecular findings with the clinicopathological features and treatment of gastroesophageal NENs. RECENT FINDINGS Degree of differentiation and Ki-67 proliferation index are required for accurate classification of neuroendocrine tumors and carcinomas but not sufficient to distinguish between the two entities. Resection remains the mainstay treatment for early-stage gastroesophageal neuroendocrine tumors. Additional perioperative therapy may benefit mitotically active tumors. There is a role for somatostatin analogues, especially in the setting of metastatic and symptomatic disease. New radiolabeled somatostatin analogues, immunotherapy, and embolization offer multimodality treatments for distant metastases. We need to understand the specific underlying biology of the various subtypes of gastroesophageal NENs to provide tailored treatment.
Collapse
|
17
|
Identification of an Individualized Prognostic Signature Based on the RWSR Model in Early-Stage Bladder Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9186546. [PMID: 32596394 PMCID: PMC7293744 DOI: 10.1155/2020/9186546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BLCA) is the fourth common cancer among males in the United States, which is also the fourth leading cause of cancer-related death in old males. BLCA has a high recurrence rate, with over 50% of patients which has at least one recurrence within five years. Due to the complexity of the molecular mechanisms and heterogeneous cancer feature, BLCA clinicians find it hard to make an efficient management decision as they lack reliable assessment of mortality risk. Meanwhile, there is currently no screening suitable prognostic signature or method recommended for early detection, which is significantly important to early-stage detection and prognosis. In this study, a novel model, named the risk-weighted sparse regression (RWSR) model, is constructed to identify a robust signature for patients of early-stage BLCA. The 17-gene signature is generated and then validated as an independent prognostic factor in BLCA cohorts from GSE13507 and TCGA_BLCA datasets. Meanwhile, a risk score model is developed and validated among the 17-gene signature. The risk score is also considered an independent factor for prognosis prediction, which is confirmed through prognosis analysis. The Kaplan-Meier with the log-rank test is used to assess survival difference. Furthermore, the predictive capacity of the signature is proved through stratification analysis. Finally, an effective patient classification is completed by a combination of the 17-gene signature and stage information, which is for better survival prediction and treatment decisions. Besides, 11 genes in the signature, such as coiled-coil domain containing 73 (CCDC73) and protein kinase, DNA-activated, and catalytic subunit (PRKDC), are proved to be prognosis marker genes or strongly associated with prognosis and progress of other types of cancer in published literature already. As a result, this paper would more accurately predict a patient's prognosis and improve surveillance in the clinical setting, which may provide a quantitative and reliable decision-making basis for the treatment plan.
Collapse
|
18
|
Pan J, Bao Q, Enders G. The Altered Metabolic Molecular Signatures Contribute to the RAD001 Resistance in Gastric Neuroendocrine Tumor. Front Oncol 2020; 10:546. [PMID: 32373532 PMCID: PMC7186336 DOI: 10.3389/fonc.2020.00546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Although the inhibition of mTOR is a promising treatment for neuroendocrine tumors, several questions are still open for cell specificity and resistance. With the newly characterized gastric neuroendocrine tumor mouse model (CEA424-SV40 T antigen transgenic mice), the anti-tumor efficiency of RAD001 (Everolimus) was tested both in vitro and in vivo. Tumor samples were analyzed for the expression of RNA by cDNA microarrays and also signaling pathways to get more details on the local surviving or selected cells. RAD001 treatment dramatically slowed down tumor growth and prolonged the animals' survival. This inhibitory effect has a preference for tumor cells since gastrointestinal hormone and neuroendocrine tumor specific markers were more reduced than the epithelial ones. While phosphorylation of p70S6K was almost completely blocked both in vitro and in vivo, the phosphorylation of 4EBP1 was only partially inhibited in vitro and unaffected in vivo. RAD001 treatment induced feedback activation of metabolism related pathways like PI(3)K–Akt–mTOR and MEK/ERK signalings. An induction of senescence as well as differential expression of genes responsible for metabolism was also observed, which highlighted the contribution of metabolic molecular signatures to the escape of the tumor cells from the treatment. Together, our data revealed efficient anti-tumor ability of RAD001 in a new gastric neuroendocrine tumor mouse model system and offered new insights into the clinical aspects of the incomplete elimination of tumor cells in patients treated.
Collapse
Affiliation(s)
- Jie Pan
- Department of Endocrinology and Metabolism, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Qi Bao
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Plastic and Reconstructive Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Georg Enders
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| |
Collapse
|