1
|
Shi Y, Cai G, Zhang C, Li H, Nie Y, Yu S, Zhang B, Wu M, Luo W, Liu J, Guan Z. Resveratrol suppresses growth and VCAN expression in a Cancer-associated fibroblast-breast Cancer hybrid organoid. Int Immunopharmacol 2025; 153:114451. [PMID: 40101422 DOI: 10.1016/j.intimp.2025.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Cancer-associated fibroblast (CAF) is a major component of the tumor microenvironment (TME) and promotes breast cancer (BC) progression and drug resistance. Two-dimensional cell culture is insufficient to simulate the protective effects of CAFs on tumors, resulting in experimental bias in drug efficacy assays. CAF-organoid co-culture model applied in this study may help solve this problem. Resveratrol (Res) has been found to suppresses BC growth, yet its effects on CAF-protected BC remain unknown. METHODS Surgical resected BC tissues were harvested and established for BC organoids (BCOs, identified with pathological examination) and isolated for CAFs (identified with immunofluorescence) respectively. BCO-CAF co-culture system was established and was measured for the protection effects of CAFs on BCOs. The system was then treated with Res and tested for EdU proliferation assay and calcein-AM/PI viable/non-viable cell labeling. Biogenic analysis was performed and showed that VCAN from CAFs may be important in this process. Versican (VCAN) expression levels in CAFs with or without Res treatment were evaluated by immunohistochemistry, qRT-PCR, and Western blotting. RESULTS 19 BCO cases were successfully cultured and confirmed with pathological examination. Res showed inhibitory effects on 15 of the 19 BCO cases (78.95 %). Although CAFs facilitated organoid growth of BCOs by 69.75 ± 14.78 %, Res treatment eliminated this effect and caused extensive cell death (84.97 % ±5.06 %) in CAF-coated BCOs, accompanied by a decrease in VCAN and TGF-β expression in CAFs. CONCLUSIONS The anti-BC value of Res was further proved by showing its promising suppressive effects on BCOs with or without the presence of CAFs.
Collapse
Affiliation(s)
- Yixin Shi
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China; Clinical Research Center, Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou 510005, China
| | - Yichu Nie
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China; Clinical Research Center, Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Sifei Yu
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Beiying Zhang
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Moli Wu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wei Luo
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Zhanwen Guan
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
2
|
Huang H, Fang L, Zhu C, Lv J, Xu P, Chen Z, Zhang Z, Wang J, Wang W, Xu Z. YBX1 promotes 5-Fluorouracil resistance in gastric cancer via m5C-dependent ATG9A mRNA stabilization through autophagy. Oncogene 2025:10.1038/s41388-025-03411-2. [PMID: 40251390 DOI: 10.1038/s41388-025-03411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
5-Fluorouracil (5-FU) is a first-line chemotherapeutic agent for advanced gastric cancer (GC). However, its clinical efficacy is often undermined by the development of chemoresistance. Aberrant activation of oncogenic pathways, including autophagy, has been implicated in 5-FU resistance. Epigenetic modifications, such as 5-methylcytosine (m5C), are also recognized to modulate autophagy and contribute to chemoresistance, though the underlying molecular mechanisms remain poorly understood. In this study, we discovered that YBX1, an m5C reader protein, was significantly upregulated in 5-FU-resistant GC cell lines and patient tissues. Both in vitro and in vivo experiments demonstrated that YBX1 promoted autophagy in GC cells, thereby enhancing 5-FU resistance. Mechanistically, the transcription factor MAZ was found to bind to the YBX1 promoter, driving its transcriptional upregulation. YBX1, in turn, stabilized ATG9A mRNA via NSUN2-mediated m5C modification, thereby enhancing autophagic activity and conferring chemoresistance. Clinically, elevated YBX1 expression correlated with poor prognosis in patients with advanced GC undergoing 5-FU-based chemotherapy. These findings establish YBX1 as a key regulator of autophagy and 5-FU resistance in GC and highlight its potential as a novel therapeutic target for overcoming 5-FU resistance.
Collapse
Affiliation(s)
- Hongxin Huang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chuming Zhu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jialun Lv
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhijun Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jihuan Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weizhi Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Institute for Gastric Cancer Research, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
3
|
Zhou C, Wu K, Gu M, Yang Y, Tu J, Huang X. Reversal of chemotherapy resistance in gastric cancer with traditional Chinese medicine as sensitizer: potential mechanism of action. Front Oncol 2025; 15:1524182. [PMID: 40052129 PMCID: PMC11882405 DOI: 10.3389/fonc.2025.1524182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer (GC) remains one of the most common types of cancer, ranking fifth among cancer-related deaths worldwide. Chemotherapy is an effective treatment for advanced GC. However, the development of chemotherapy resistance, which involves the malfunction of several signaling pathways and is the consequence of numerous variables interacting, seriously affects patient treatment and leads to poor clinical outcomes. Therefore, in order to treat GC, it is imperative to find novel medications that will increase chemotherapy sensitivity and reverse chemotherapy resistance. Traditional Chinese medicine (TCM) has been extensively researched as an adjuvant medication in recent years. It has been shown to have anticancer benefits and to be crucial in enhancing chemotherapy sensitivity and reducing chemotherapy resistance. Given this, the mechanism of treatment resistance in GC is summed up in this work. The theoretical foundation for TCM as a sensitizer in adjuvant treatment of GC is established by introducing the primary signal pathways and possible targets implicated in improving chemotherapy sensitivity and reversing chemotherapy resistance of GC by TCM and active ingredients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese
Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhu M, Peng Y, Qi Q, Zhang Y, Han W, Bao Y, Liu Y. Mechanistic study of Nidus Vespae inhibiting gastric cancer in vitro through the JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119027. [PMID: 39489359 DOI: 10.1016/j.jep.2024.119027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nidus Vespae, an animal-derived traditional Chinese medicine, has a long-standing history in treating inflammatory conditions and tumor-related diseases. Notably, Nidus Vespae decoction (NVD) has been shown to inhibit the proliferation of gastric cancer cells, although the underlying mechanisms remain unclear. OBJECTIVE This study aimed to elucidate the efficacy and mechanisms by which NVD exerts its therapeutic effects on gastric cancer. MATERIALS AND METHODS We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of NVD on gastric cancer cell proliferation, while flow cytometry was utilized to evaluate cell cycle arrest and apoptosis. Differentially expressed proteins (DEPs) were identified by proteomics analysis, which were further analyzed through Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Protein-protein interaction (PPI) analysis was conducted to identify the hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were conducted to assess mRNA and protein levels related to apoptosis, cell cycle regulation, and the JAK2/STAT3 pathway. Rescue experiments with Colivelin TFA confirmed the role of NVD in inhibiting gastric cancer cell proliferation. UPLC-HRMS and HS-SPME-GC-MS technologies were performed to analyze the composition of NVD, and the bioinformatics tool called BATMAN-TCM database was used for functional analyses. RESULTS Our results demonstrated that NVD significantly hindered the proliferation of gastric cancer cells, initiated programmed cell death, and induced cell cycle arrest in G2/M or G0/G1 phases in various gastric carcinoma cells in vitro. The identified DEPs were involved in several cancer-related pathways and signal transduction processes, notably the JAK-STAT receptor signaling pathway. NVD was found to down-regulate the JAK2/STAT3 signaling cascade, and reactivation of STAT3 diminished its anti-gastric cancer effects. Finally, the ingredient-target-disease network analysis also verified the anti-tumor effect of NVD. CONCLUSION This study highlights the potential of Nidus Vespae as a therapeutic agent for gastric cancer, providing insights into its molecular mechanisms of action.
Collapse
Affiliation(s)
- Ming Zhu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Yun Peng
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Qiufeng Qi
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Yaping Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China; Medical Oncology Department, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Weiwei Han
- Department of Emergency, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Yanqing Bao
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Yongping Liu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, Jiangsu, China; Medical Oncology Department, Changzhou Tumor Hospital, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Yang L, Zhang S, Zheng L, Kong F, Dang W, Shen S, Li X, Jia L, Zhang X, Lu N. Pan-Cancer Analysis of the Prognostic and Immunological Role of SEMA7A. Int J Gen Med 2024; 17:6443-6461. [PMID: 39735166 PMCID: PMC11682669 DOI: 10.2147/ijgm.s499872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background Semaphorin7A (SEMA7A) has been found to regulate both nerve and vessel homeostasis, but its specific role in pan-cancer remains uncertain. This research seeks to delve into the function and clinical relevance of SEMA7A in pan-cancer. Methods Through an analysis of gene expression omnibus and the cancer genome atlas datasets, we investigated the impact of SEMA7A on prognosis and immune regulation across 33 types of tumors. Variations in SEMA7A expression were observed between cancerous and adjacent normal tissues, with a notable correlation between SEMA7A levels and patient prognosis. Results Across most cancer types, SEMA7A expression was linked to the infiltration of immune cells, as well as immune checkpoints and other immune regulators. The findings were further confirmed through quantitative real-time polymerase chain reaction analysis of SEMA7A expression in breast cancer. Further, SEMA7A is positively associated with prognosis in different cancers. Additionally, SEMA7A expression was associated with TMB and MSI in some cancer types, while in 15 types of cancer, there was a correlation between SEMA7A expression and DNA methylation. SEMA7A was associated with the expression of multiple immune checkpoint genes and abundance of tumor-infiltrating immune cells across multiple types of cancer. Conclusion This inaugural pan-cancer examination of SEMA7A sheds light on its prognostic and immunological significance in diverse tumor types, suggesting its potential utility as a biomarker for predicting unfavorable outcomes and immune cell infiltration in cancer.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Wei Dang
- Medical Research Center, Xingtai Medical College, Xingtai, Hebei, 054000, People’s Republic of China
| | - Shipeng Shen
- Medical Research Center, Xingtai Medical College, Xingtai, Hebei, 054000, People’s Republic of China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Xiaoru Zhang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| | - Na Lu
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, 054000, People’s Republic of China
| |
Collapse
|
6
|
Tang L, He D, Su B. Nrf2: A critical participant in regulation of apoptosis, ferroptosis, and autophagy in gastric cancer. Acta Histochem 2024; 126:152203. [PMID: 39342913 DOI: 10.1016/j.acthis.2024.152203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2) is a specific transcription factor that maintains redox homeostasis by regulating the expression of anti-oxidative stress-related genes. Hyperactivation of Nrf2 is involved in tumor progression and is associated with chemoresistance in a large number of solid tumors. Programmatic cell death (PCD), such as apoptosis, ferroptosis, and autophagy, plays a crucial role in tumor development and chemotherapy sensitivity. Accumulating evidence suggests that some anti-tumor compounds and genes can induce massive production of reactive oxygen species (ROS) via inhibiting Nrf2 expression, which exacerbates oxidative stress and promotes Gastric cancer (GC) cell death, thereby enhancing the sensitivity of GC cells to chemotherapy-induced PCD. In this review, we summarize the role of antitumor drugs in interfering in three different types of PCD (apoptosis, ferroptosis, and autophagy) in GC cells by modulating Nrf2 expression, as well as the molecular mechanisms through which targeting Nrf2 brings about PCD and chemosensitivity. It is reasonable to believe that Nrf2 serves as a potential therapeutic target, and targeting Nrf2 by drug or gene regulation could provide a new strategy for the treatment of GC.
Collapse
Affiliation(s)
- LiJie Tang
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - DongXiu He
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Su
- Institute of Pharmacy and Pharmacology, School of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H, Zhu W. ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ 2024; 12:e17628. [PMID: 38952983 PMCID: PMC11216209 DOI: 10.7717/peerj.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Background Ovarian cancer is an aggressive malignancy with high mortality known for its considerable metastatic potential. This study aimed to explore the expression and functional role of Unc-51 like autophagy activating kinase 2 (ULK2) in the progression of ovarian cancer. Methods ULK2 expression patterns in ovarian cancer tissues as well as benign tumor control samples obtained from our institution were evaluated using immunohistochemistry. Cell counting kit 8 and Transwell assays were applied to assess the effects of ULK2 overexpression on cell proliferation, migration and invasion, respectively. RNA sequencing was performed to explore potential mechanisms of action of ULK2 beyond its classical autophagy modulation. Results Our experiments showed significant downregulation of ULK2 in ovarian cancer tissues. Importantly, low expression of ULK2 was markedly correlated with decreased overall survival. In vitro functional studies further demonstrated that overexpression of ULK2 significantly suppressed tumor cell proliferation, migration, and invasion. RNA sequencing analysis revealed a potential regulatory role of ULK2 in the insulin signaling pathway through upregulation of insulin-like growth factor binding protein-3 (IGFBP3) in ovarian cancer cells. Conclusions In summary, the collective data indicated that ULK2 acted as a tumor suppressor in ovarian cancer by upregulating the expression of IGFBP3. Our study underscores the potential utility of ULK2 as a valuable prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu, China
| | - Changxiang Shao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jing Liu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Han Xu
- Department of General Surgery, Jing’an District Center Hospital of Shanghai, Shanghai, China
| | - Weipei Zhu
- The Second Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu, China
| |
Collapse
|
8
|
Jiang X, Zhu Z, Ding L, Du W, Pei D. ALKBH4 impedes 5-FU Sensitivity through suppressing GSDME induced pyroptosis in gastric cancer. Cell Death Dis 2024; 15:435. [PMID: 38902235 PMCID: PMC11189908 DOI: 10.1038/s41419-024-06832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
5-Fluorouracil (5-FU) is the primary treatment option for advanced gastric cancer. However, the current challenge lies in the absence of validated biomarkers to accurately predict the efficacy and sensitivity of 5-FU in individual patients. It has been confirmed that 5-FU can regulate tumor progression by promoting gasdermin E (GSDME, encoded by DFNA5) cleavage to induce pyroptosis. Lysine demethylase ALKBH4 has been shown to be upregulated in a variety of tumors to promote tumor progression. However, its role in gastric cancer is not clear. In this study, we observed a significant upregulation of ALKBH4 expression in gastric cancer tissues compared to adjacent normal tissues, indicating its potential as a predictor for the poor prognosis of gastric cancer patients. On the contrary, GSDME exhibits low expression levels in gastric cancer and demonstrates a negative correlation with poor prognosis among patients diagnosed with gastric cancer. In addition, we also found that high expression of ALKBH4 can inhibit pyroptosis and promote the proliferation of gastric cancer cells. Mechanistically, ALKBH4 inhibits GSDME activation at the transcriptional level by inhibiting H3K4me3 histone modification in the GSDME promoter region, thereby reducing the sensitivity of gastric cancer cells to 5-FU treatment. These findings provide further insight into the regulatory mechanisms of ALKBH4 in the progression of gastric cancer and underscore its potential as a prognostic marker for predicting the sensitivity of gastric cancer cells to 5-FU treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhiman Zhu
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lina Ding
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wenqi Du
- Department of Human Anatomy, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Dongsheng Pei
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
9
|
Wang Y, Li X, Gang Q, Huang Y, Liu M, Zhang H, Shen S, Qi Y, Zhang J. Pathomics and single-cell analysis of papillary thyroid carcinoma reveal the pro-metastatic influence of cancer-associated fibroblasts. BMC Cancer 2024; 24:710. [PMID: 38858612 PMCID: PMC11163752 DOI: 10.1186/s12885-024-12459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is globally prevalent and associated with an increased risk of lymph node metastasis (LNM). The role of cancer-associated fibroblasts (CAFs) in PTC remains unclear. METHODS We collected postoperative pathological hematoxylin-eosin (HE) slides from 984 included patients with PTC to analyze the density of CAF infiltration at the invasive front of the tumor using QuPath software. The relationship between CAF density and LNM was assessed. Single-cell RNA sequencing (scRNA-seq) data from GSE193581 and GSE184362 datasets were integrated to analyze CAF infiltration in PTC. A comprehensive suite of in vitro experiments, encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate the regulatory role of CD36+CAF in two PTC cell lines, TPC1 and K1. RESULTS A significant correlation was observed between high fibrosis density at the invasive front of the tumor and LNM. Analysis of scRNA-seq data revealed metastasis-associated myoCAFs with robust intercellular interactions. A diagnostic model based on metastasis-associated myoCAF genes was established and refined through deep learning methods. CD36 positive expression in CAFs can significantly promote the proliferation, migration, and invasion abilities of PTC cells, while inhibiting the apoptosis of PTC cells. CONCLUSION This study addresses the significant issue of LNM risk in PTC. Analysis of postoperative HE pathological slides from a substantial patient cohort reveals a notable association between high fibrosis density at the invasive front of the tumor and LNM. Integration of scRNA-seq data comprehensively analyzes CAF infiltration in PTC, identifying metastasis-associated myoCAFs with strong intercellular interactions. In vitro experimental results indicate that CD36 positive expression in CAFs plays a promoting role in the progression of PTC. Overall, these findings provide crucial insights into the function of CAF subset in PTC metastasis.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Xin Li
- Department of Head and Neck Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Qingwei Gang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Yinde Huang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Mingyu Liu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Han Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Shikai Shen
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Yao Qi
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
10
|
He P, Li Y, Hu J, Deng B, Tan Z, Chen Y, Yu B, Dong W. Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155316. [PMID: 38518635 DOI: 10.1016/j.phymed.2023.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE To explore the efficacy and potential mechanism of PTE in treating GC. METHODS We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.
Collapse
Affiliation(s)
- Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
11
|
Li D, Huang P, Xia L, Leng W, Qin S. Cancer-associated fibroblasts promote gastric cancer cell proliferation by paracrine FGF2-driven ribosome biogenesis. Int Immunopharmacol 2024; 131:111836. [PMID: 38479160 DOI: 10.1016/j.intimp.2024.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
The cancer-associated fibroblast (CAF)-derived secretome plays critical roles in tumor progression by remodelling tumor microenvironment. Tumorigenesis is accompanied by the transformation of normal fibroblasts (NF) into CAF, leading to significant changes in their secretome. This work aims to identify the differential components of secretome between NFs and CAFs and reveal their functions in gastric cancer (GC). Firstly, our molecular typing studies and immune infiltration analysis showed that CAF infiltration level was increased and showed a significant association with clinical characteristics and poor prognosis of GC patients. Secondly, RNA-seq analysis revealed that a total of 1531 genes showed significant expression changes between NF and CAF. According to the annotation of the Human Protein Atlas (HPA) database, 147 genes encode secreted proteins, including FGF2. Particularly, the cell co-culture and RNA sequencing studies confirmed that exogenous recombinant FGF2 protein treatment promoted GC cell proliferation by enhancing ribosome biogenesis. The rescue assay showed that CAF-secreted FGF2 protein promotes GC cell growth and proliferation in a FGFR1-dependent manner. Our finding provides evidence that targeting blockade of CAF-derived FGF2 protein might be a promising treatment for GC.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China; Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China; Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China; Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
12
|
Ozmen E, Demir TD, Ozcan G. Cancer-associated fibroblasts: protagonists of the tumor microenvironment in gastric cancer. Front Mol Biosci 2024; 11:1340124. [PMID: 38562556 PMCID: PMC10982390 DOI: 10.3389/fmolb.2024.1340124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Enhanced knowledge of the interaction of cancer cells with their environment elucidated the critical role of tumor microenvironment in tumor progression and chemoresistance. Cancer-associated fibroblasts act as the protagonists of the tumor microenvironment, fostering the metastasis, stemness, and chemoresistance of cancer cells and attenuating the anti-cancer immune responses. Gastric cancer is one of the most aggressive cancers in the clinic, refractory to anti-cancer therapies. Growing evidence indicates that cancer-associated fibroblasts are the most prominent risk factors for a poor tumor immune microenvironment and dismal prognosis in gastric cancer. Therefore, targeting cancer-associated fibroblasts may be central to surpassing resistance to conventional chemotherapeutics, molecular-targeted agents, and immunotherapies, improving survival in gastric cancer. However, the heterogeneity in cancer-associated fibroblasts may complicate the development of cancer-associated fibroblast targeting approaches. Although single-cell sequencing studies started dissecting the heterogeneity of cancer-associated fibroblasts, the research community should still answer these questions: "What makes a cancer-associated fibroblast protumorigenic?"; "How do the intracellular signaling and the secretome of different cancer-associated fibroblast subpopulations differ from each other?"; and "Which cancer-associated fibroblast subtypes predominate specific cancer types?". Unveiling these questions can pave the way for discovering efficient cancer-associated fibroblast targeting strategies. Here, we review current knowledge and perspectives on these questions, focusing on how CAFs induce aggressiveness and therapy resistance in gastric cancer. We also review potential therapeutic approaches to prevent the development and activation of cancer-associated fibroblasts via inhibition of CAF inducers and CAF markers in cancer.
Collapse
Affiliation(s)
- Ece Ozmen
- Koç University Graduate School of Health Sciences, Istanbul, Türkiye
| | - Tevriz Dilan Demir
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Gulnihal Ozcan
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Department of Medical Pharmacology, Koç University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
13
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
14
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Zhang D, Sun R, Di C, Li L, Zhao F, Han Y, Zhang W. Microdissection of cancer-associated fibroblast infiltration subtypes unveils the secreted SERPINE2 contributing to immunosuppressive microenvironment and immuotherapeutic resistance in gastric cancer: A large-scale study integrating bulk and single-cell transcriptome profiling. Comput Biol Med 2023; 166:107406. [PMID: 37729702 DOI: 10.1016/j.compbiomed.2023.107406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
In the era of immunotherapy, the suboptimal response rate and the development of acquired resistance among the initial beneficiaries continue to present significant challenges across multiple malignancies, including gastric cancer (GC). Considering that the interactions of tumor stroma, especially the cancer-associated fibroblasts (CAFs), with immune and tumor cells, play indispensable roles in tumor progression, tumor microenvironment remodeling and therapeutic responsiveness, in-depth exploration on the roles of CAFs and pivotal mediators of their functions may provide novel clues to increase the effectiveness of current immunotherapeutic drugs and further achieve synergistic antitumor response. Herein, through the consensus clustering of canonical biomarkers, three GC subclasses with different abundance of CAFs were virtually microdissected in four integrated bulk cohorts encompassing 2148 GC patients from 11 independent datasets. An extensive immunogenomic analysis revealed that tumors with high CAFs infiltration were characterized with unfavorable outcomes, aggressive phenotypes, decreased tumor immunogenicity, high risk of immune evasion and thus immunotherapeutic resistance. By leveraging large-scale single-cell transcriptomic profiling, a series of CAF-secreted proteins were identified, among which the SERPINE2 was confirmed to be restrictively enriched in stromal fibroblasts of GC tissues and contribute to promoting a protumor milieu and fostering an immunosuppressive microenvironment via bioinformatics computations and tissue microarray analysis. Moreover, pan-cancer investigations generalized the immunological roles of SERPINE2, especially in pan-gastrointestinal malignancies, with multiple real-world immunotherapy cohorts further confirming its implications on predicting immunotherapeutic efficacy. In conclusion, these findings suggest that the CAF-derived SERPINE2 is a promising immune-oncology target with therapeutic implications to further synergize the immunotherapeutic combinations.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China.
| | - Rui Sun
- Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chenyu Di
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Han
- Department of Pathology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Wenjie Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250011, China; Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250011, China.
| |
Collapse
|
16
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
18
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
19
|
Wang F, Long J, Li L, Wu ZX, Da TT, Wang XQ, Huang C, Jiang YH, Yao XQ, Ma HQ, Lian ZX, Zhao ZB, Cao J. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. SCIENCE ADVANCES 2023; 9:eadf5464. [PMID: 37327339 PMCID: PMC10275599 DOI: 10.1126/sciadv.adf5464] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, we comprehensively charted the cellular landscape of colorectal cancer (CRC) and well-matched liver metastatic CRC using single-cell and spatial transcriptome RNA sequencing. We generated 41,892 CD45- nonimmune cells and 196,473 CD45+ immune cells from 27 samples of six CRC patients, and found that CD8_CXCL13 and CD4_CXCL13 subsets increased significantly in liver metastatic samples that exhibited high proliferation ability and tumor-activating characterization, contributing to better prognosis of patients. Distinct fibroblast profiles were observed in primary and liver metastatic tumors. F3+ fibroblasts enriched in primary tumors contributed to worse overall survival by expressing protumor factors. However, MCAM+ fibroblasts enriched in liver metastatic tumors might promote generation of CD8_CXCL13 cells through Notch signaling. In summary, we extensively analyzed the transcriptional differences of cell atlas between primary and liver metastatic tumors of CRC by single-cell and spatial transcriptome RNA sequencing, providing different dimensions of the development of liver metastasis in CRC.
Collapse
Affiliation(s)
- Fei Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zi-Xin Wu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Tian-Tian Da
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiao-Qing Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuan Huang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yi-Hua Jiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Hai-Qing Ma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zhe-Xiong Lian
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| |
Collapse
|
20
|
Zhong C, Wu C, Lin Y, Lin D. Refined expression quantitative trait locus analysis on adenocarcinoma at the gastroesophageal junction reveals susceptibility and prognostic markers. Front Genet 2023; 14:1180500. [PMID: 37265963 PMCID: PMC10230079 DOI: 10.3389/fgene.2023.1180500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Objectives: This study aimed to explore cell type level expression quantitative trait loci (eQTL) in adenocarcinoma at the gastroesophageal junction (ACGEJ) and identify susceptibility and prognosis markers. Methods: Whole-genome sequencing (WGS) was performed on 120 paired samples from Chinese ACGEJ patients. Germline mutations were detected by GATK tools. RNA sequencing (RNA-seq) data on ACGEJ samples were taken from our previous studies. Public single-cell RNA sequencing (scRNA-seq) data were used to produce the proportion of epithelial cells. Matrix eQTL and a linear mixed model were used to identify condition-specific cis-eQTLs. The R package coloc was used to perform co-localization analysis with the public data of genome-wide association studies (GWASs). Log-rank and Cox regression tests were used to identify survival-associated eQTL and genes. Functions of candidate risk loci were explored by experimental validation. Results: Refined eQTL analyses of paired ACGEJ samples were performed and 2,036 potential ACGEJ-specific eQTLs with East Asian specificity were identified in total. ACGEJ-gain eQTLs were enriched at promoter regions more than ACGEJ-loss eQTLs. rs658524 was identified as the top eQTL close to the transcription start site of its paired gene (CTSW). rs2240191-RASAL1, rs4236599-FOXP2, rs4947311-PSORS1C1, rs13134812-LOC391674, and rs17508585-CDK13-DT were identified as ACGEJ-specific susceptibility eQTLs. rs309483-LINC01355 was associated with the overall survival of ACGEJ patients. We explored functions of candidate eQTLs such as rs658524, rs309483, rs2240191, and rs4947311 by experimental validation. Conclusion: This study provides new risk loci for ACGEJ susceptibility and effective disease prognosis biomarkers.
Collapse
Affiliation(s)
- Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Luo XY, Fu X, Liu F, Luo JY, Chen AF. Sema3G activates YAP and promotes VSMCs proliferation and migration via Nrp2/PlexinA1. Cell Signal 2023; 105:110613. [PMID: 36720439 DOI: 10.1016/j.cellsig.2023.110613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Diabetes exacerbates neointima formation after vascular procedures, manifested by accelerated proliferation and migration of vascular smooth muscle cells (VSMCs). Semaphorin 3G (Sema3G), secreted mainly from endothelial cells (ECs), regulates various cellular functions and vascular pathologies. However, the function and potential mechanism of ECs-derived Sema3G in VSMCs under diabetic condition remain unclear. OBJECTIVE To investigate the role and the mechanism of ECs-derived Sema3G in the regulation of VSMCs proliferation and migration. RESULTS ECs-derived Sema3G promoted human aortic SMCs (HASMCs) cell cycle progression and proliferation. Sema3G upregulated the expression of MMP2 and MMP9, which might explain the increased HASMCs migration by Sema3G. Inhibition of Nrp2/PlexinA1 mitigated the effect of Sema3G on promoting HASMCs proliferation and migration. Mechanistically, Sema3G inhibited LATS1 and activated YAP via Nrp2/PlexinA1. Verteporfin, an FDA-approved YAP pathway inhibitor, counteracted Sema3G-induced cyclin E and cyclin D1 expression. Besides, Sema3G expression was upregulated in ECs of diabetic mouse aortas. Serum Sema3G level was increased in type 2 diabetic patients and mice. Moreover, compared to chow diet-fed mice, high-fat diet (HFD)-fed obese mice showed thicker neointima and higher Sema3G expression in vasculature after femoral injury. CONCLUSIONS Our results indicated that ECs-derived Sema3G under diabetic condition activated YAP and promoted HASMCs proliferation and migration via Nrp2/PlexinA1. Thus, inhibition of Sema3G may hold therapeutic potential against diabetes-associated intimal hyperplasia.
Collapse
Affiliation(s)
- Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Jiang-Yun Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Zhai X, Chen X, Wan Z, Ge M, Ding Y, Gu J, Hua J, Guo D, Tan M, Xu D. Identification of the novel therapeutic targets and biomarkers associated of prostate cancer with cancer-associated fibroblasts (CAFs). Front Oncol 2023; 13:1136835. [PMID: 36937411 PMCID: PMC10020494 DOI: 10.3389/fonc.2023.1136835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, prostate cancer remains a leading cause of mortality and morbidity despite advances in treatment. Research on prostate cancer has primarily focused on the malignant epithelium, but the tumor microenvironment has recently been recognized as an important factor in the progression of prostate cancer. Cancer-associated fibroblasts (CAFs) play an important role in prostate cancer progression among multiple cell types in the tumor microenvironment. In order to develop new treatments and identify predictive and prognostic biomarkers for CAFs, further research is needed to understand the mechanism of action of prostate cancer and CAF. In this work, we performed the single-cell RNA sequence analysis to obtain the biomarkers for CAFs, and ten genes were finally regarded as the marker genes for CAFs. Based on the ssGSEA algorithm, the prostate cancer cohort was divided into low- and high-CAFs groups. Further analysis revealed that the CAFs-score is associated with many immune-related cells and immune-related pathways. In addition, between the low- and high-CAFs tissues, a total of 127 hub genes were discovered, which is specific in CAFs. After constructing the prognostic prediction model, SLPI, VSIG2, CENPF, SLC7A1, SMC4, and ITPR2 were finally regarded as the key genes in the prognosis of patients with prostate cancer. Each patient was assigned with the risk score as follows: SLPI* 0.000584811158157081 + VSIG2 * -0.01190627068889 + CENPF * -0.317826812875334 + SLC7A1 * -0.0410213995358753 + SMC4 * 0.202544454923637 + ITPR2 * -0.0824652047622673 + TOP2A * 0.140312081524807 + OR51E2 * -0.00136602095885459. The GSVA revealed the biological features of CAFs, many cancer-related pathways, such as the adipocytokine signaling pathway, ERBB signaling pathway, GnRH signaling pathway, insulin signaling pathway, mTOR signaling pathway and PPAR signaling pathway are closely associated with CAFs. As a result of these observations, similar transcriptomics may be involved in the transition from normal fibroblasts to CAFs in adjacent tissues. As one of the biomarkers for CAFs, CENPF can promote the proliferation ability of prostate cancer cells. The overexpress of CENPF could promote the proliferation ability of prostate cancer cells. In conclusion, we discuss the potential prognostic and therapeutic value of CAF-dependent pathways in prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mingyue Tan
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Zhou Z, Guo S, Lai S, Wang T, Du Y, Deng J, Zhang S, Gao G, Zhang J. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer-associated fibroblast-related gene signature for predicting survival and therapy in gastric cancer. BMC Cancer 2023; 23:108. [PMID: 36717783 PMCID: PMC9887891 DOI: 10.1186/s12885-022-10332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 02/01/2023] Open
Abstract
As the dominant component of the tumor microenvironment, cancer-associated fibroblasts (CAFs), play a vital role in tumor progression. An increasing number of studies have confirmed that CAFs are involved in almost every aspect of tumors including tumorigenesis, metabolism, invasion, metastasis and drug resistance, and CAFs provide an attractive therapeutic target. This study aimed to explore the feature genes of CAFs for potential therapeutic targets and reliable prediction of prognosis in patients with gastric cancer (GC). Bioinformatic analysis was utilized to identify the feature genes of CAFs in GC by performing an integrated analysis of single-cell and transcriptome RNA sequencing using R software. Based on these feature genes, a CAF-related gene signature was constructed for prognostic prediction by LASSO. Simultaneously, survival analysis and nomogram were performed to validate the prognostic predictive value of this gene signature, and qRT-PCR and immunohistochemical staining verified the expression of the feature genes of CAFs. In addition, small molecular drugs for gene therapy of CAF-related gene signatures in GC patients were identified using the connectivity map (CMAP) database. A combination of nine CAF-related genes was constructed to characterize the prognosis of GC, and the prognostic potential and differential expression of the gene signature were initially validated. Additionally, three small molecular drugs were deduced to have anticancer properties on GC progression. By integrating single-cell and bulk RNA sequencing analyses, a novel gene signature of CAFs was constructed. The results provide a positive impact on future research and clinical studies involving CAFs for GC.
Collapse
Affiliation(s)
- Zhiyang Zhou
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Sixuan Guo
- grid.260463.50000 0001 2182 8825Nanchang University, Nanchang, Jiangxi Province China
| | - Shuhui Lai
- grid.260463.50000 0001 2182 8825Nanchang University, Nanchang, Jiangxi Province China
| | - Tao Wang
- grid.412604.50000 0004 1758 4073Department of Day Ward, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Yao Du
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Junping Deng
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Shun Zhang
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Ge Gao
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| | - Jiangnan Zhang
- grid.412604.50000 0004 1758 4073Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province China
| |
Collapse
|
24
|
Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer 2022; 21:225. [PMID: 36550571 PMCID: PMC9773588 DOI: 10.1186/s12943-022-01682-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer divergence has many facets other than being considered a genetic term. It is a tremendous challenge to understand the metastasis and therapy response in cancer biology; however, it postulates the opportunity to explore the possible mechanism in the surrounding tumor environment. Most deadly solid malignancies are distinctly characterized by their tumor microenvironment (TME). TME consists of stromal components such as immune, inflammatory, endothelial, adipocytes, and fibroblast cells. Cancer stem cells (CSCs) or cancer stem-like cells are a small sub-set of the population within cancer cells believed to be a responsible player in the self-renewal, metastasis, and therapy response of cancer cells. The correlation between TME and CSCs remains an enigma in understanding the events of metastasis and therapy resistance in cancer biology. Recent evidence suggests that TME dictates the CSCs maintenance to arbitrate cancer progression and metastasis. The immune, inflammatory, endothelial, adipocyte, and fibroblast cells in the TME release growth factors, cytokines, chemokines, microRNAs, and exosomes that provide cues for the gain and maintenance of CSC features. These intricate cross-talks are fueled to evolve into aggressive, invasive, migratory phenotypes for cancer development. In this review, we have abridged the recent developments in the role of the TME factors in CSC maintenance and how these events influence the transition of tumor progression to further translate into metastasis and therapy resistance in cancer.
Collapse
Affiliation(s)
- Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Abhirup C Are
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Zhu Z, Shi L, Dong Y, Zhang Y, Yang F, Wei J, Huo M, Li P, Liu X. Effect of crosstalk among conspirators in tumor microenvironment on niche metastasis of gastric cancer. Am J Cancer Res 2022; 12:5375-5402. [PMID: 36628284 PMCID: PMC9827080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
In Traditional Chinese medicine, the metaphoric views of the human body are based on observations of nature guided by the theory of "Yin-Yang". The direct meanings of yin and yang are the bright and dark sides of an object, which often represent a wider range of opposite properties. When we shifted our view to gastric cancer (GC), we found that there are more distinctive Yin and Yang features in the mechanism of GC development and metastasis, which is observed in many mechanisms such as GC metastasis, immune escape, and stem cell homing. When illustrating this process from the yin-yang perspective, categorizing different cells in the tumor microenvironment enables new and different perspectives to be put forward on the mechanism and treatment of GC metastasis.
Collapse
Affiliation(s)
- Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Lijuan Shi
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Jingjing Wei
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Minfeng Huo
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Peiqing Li
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| |
Collapse
|
26
|
Curcumol Undermines SDF-1α/CXCR4/NF-κB Signaling Pathway to Suppress the Progression of Chronic Atrophic Gastritis (CAG) and Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3219001. [PMID: 36159583 PMCID: PMC9507721 DOI: 10.1155/2022/3219001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
CAG is the most common precancerous disease of gastric cancer, which belongs to a kind of chronic gastritis. CAG is in close association with gastric cancer, which makes itself a critical node clinically in cancer prevention and treatment. Curcumol is a main active monomer in Fuzheng Huowei decoction, which has the properties of antioxidant, antiviral, and antitumor. In this study, the expression of SDF-1α/CXCR4/NF-κB was detected by in vivo and in vitro methods. Then, we found that the expressions of NF-κB, SDF-1α, CXCR4, and p-NF-κB were decreased in the curcumol treatment group. Curcumol inhibited gastric cancer cells’ viability, migration, and invasion and induced their apoptosis. After adding the lentivirus overexpressing SDF-1α to the curcumol treatment group, it was found that SDF-1α, CXCR4, NF-κB, and p-NF-κB protein expressions were all increased, and the effect of curcumol on gastric cancer cells was reversed. In the nude mouse experiment, the tumor volume in the curcumol + SDF-1α group was the largest, and the tumor volume in the Fuzheng Huowei decoction + NC group was the smallest. In conclusion, curcumol effectively protects gastric tissue and inhibits the viability of gastric cancer cells, and curcumol regulates SDF-1α/CXCR4/NF-κB to play a therapeutic role in chronic atrophic gastritis and gastric cancer.
Collapse
|
27
|
Tian XM, Xiang B, Jin LM, Mi T, Wang JK, Zhanghuang C, Zhang ZX, Chen ML, Shi QL, Liu F, Lin T, Wei GH. Immune-related gene signature associates with immune landscape and predicts prognosis accurately in patients with Wilms tumour. Front Immunol 2022; 13:920666. [PMID: 36172369 PMCID: PMC9510599 DOI: 10.3389/fimmu.2022.920666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms tumour (WT) is the most common kidney malignancy in children. Chemoresistance is the leading cause of tumour recurrence and poses a substantial therapeutic challenge. Increasing evidence has underscored the role of the tumour immune microenvironment (TIM) in cancers and the potential for immunotherapy to improve prognosis. There remain no reliable molecular markers for reflecting the immune landscape and predicting patient survival in WT. Here, we examine differences in gene expression by high-throughput RNA sequencing, focused on differentially expressed immune-related genes (IRGs) based on the ImmPort database. Via univariate Cox regression analysis and Lasso-penalized Cox regression analysis, IRGs were screened out to establish an immune signature. Kaplan-Meier curves, time-related ROC analysis, univariate and multivariate Cox regression studies, and nomograms were used to evaluate the accuracy and prognostic significance of this signature. Furthermore, we found that the immune signature could reflect the immune status and the immune cell infiltration character played in the tumour microenvironment (TME) and showed significant association with immune checkpoint molecules, suggesting that the poor outcome may be partially explained by its immunosuppressive TME. Remarkably, TIDE, a computational method to model tumour immune evasion mechanisms, showed that this signature holds great potential for predicting immunotherapy responses in the TARGET-wt cohort. To decipher the underlying mechanism, GSEA was applied to explore enriched pathways and biological processes associated with immunophenotyping and Connectivity map (CMap) along with DeSigN analysis for drug exploration. Finally, four candidate immune genes were selected, and their expression levels in WT cell lines were monitored via qRT-PCR. Meanwhile, we validated the function of a critical gene, NRP2. Taken together, we established a novel immune signature that may serve as an effective prognostic signature and predictive biomarker for immunotherapy response in WT patients. This study may give light on therapeutic strategies for WT patients from an immunological viewpoint.
Collapse
Affiliation(s)
- Xiao-Mao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Li-Ming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin-Kui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chenghao Zhanghuang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Zhao-Xia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Mei-Ling Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Qin-Lin Shi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Feng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Feng Liu,
| | - Tao Lin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
28
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
29
|
Mak TK, Li X, Huang H, Wu K, Huang Z, He Y, Zhang C. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Front Immunol 2022; 13:951214. [PMID: 35967313 PMCID: PMC9372353 DOI: 10.3389/fimmu.2022.951214] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers, with a wide range of symptoms and outcomes. Cancer-associated fibroblasts (CAFs) are newly identified in the tumor microenvironment (TME) and associated with GC progression, prognosis, and treatment response. A novel CAF-associated prognostic model is urgently needed to improve treatment strategies. METHODS The detailed data of GC samples were downloaded from The Cancer Genome Atlas (TCGA), GSE62254, GSE26253, and GSE84437 datasets, then obtained 18 unique CAF-related genes from the research papers. Eight hundred eight individuals with GC were classified as TCGA or GSE84437 using consensus clustering by the selected CAF-related genes. The difference between the two subtypes revealed in this study was utilized to create the "CAF-related signature score" (CAFS-score) prognostic model and validated with the Gene Expression Omnibus (GEO) database. RESULTS We identified two CAF subtypes characterized by high and low CAFS-score in this study. GC patients in the low CAFS-score group had a better OS than those in the high CAFS-score group, and the cancer-related malignant pathways were more active in the high CAFS-score group, compared to the low CAFS-score group. We found that there was more early TNM stage in the low CAFS-score subgroup, while there was more advanced TNM stage in the high CAFS-score subgroup. The expression of TMB was significantly higher in the low CAFS-score subgroup than in the high CAFS-score subgroup. A low CAFS-score was linked to increased microsatellite instability-high (MSI-H), mutation load, and immunological activation. Furthermore, the CAFS-score was linked to the cancer stem cell (CSC) index as well as chemotherapeutic treatment sensitivity. The patients in the high CAFS-score subgroup had significantly higher proportions of monocytes, M2 macrophages, and resting mast cells, while plasma cells and follicular helper T cells were more abundant in the low-risk subgroup. The CAFS-score was also highly correlated with the sensitivity of chemotherapeutic drugs. The low CAFS-score group was more likely to have an immune response and respond to immunotherapy. We developed a nomogram to improve the CAFS-clinical score's usefulness. CONCLUSION The CAFS-score may have a significant role in the TME, clinicopathological characteristics, prognosis, CSC, MSI, and drug sensitivity, according to our investigation of CAFs in GC. We also analyzed the value of the CAFS-score in immune response and immunotherapy. This work provides a foundation for improving prognosis and responding to immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kaiming Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
30
|
Chen X, Chen W, Zhao Y, Wang Q, Wang W, Xiang Y, Yuan H, Xie Y, Zhou J. Interplay of Helicobacter pylori, fibroblasts, and cancer cells induces fibroblast activation and serpin E1 expression by cancer cells to promote gastric tumorigenesis. J Transl Med 2022; 20:322. [PMID: 35864535 PMCID: PMC9306099 DOI: 10.1186/s12967-022-03537-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/13/2022] [Indexed: 01/19/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) can disrupt the tight junctions between gastric epithelial cells and penetrate the intercellular spaces acting on epithelial cells, normal fibroblasts (NFs), and cancer-associated fibroblasts (CAFs), but their interaction in gastric cancer tumorigenesis and progression remains unclear. Methods Primary CAFs and NFs were isolated from paired gastric cancer tissues and adjacent normal tissues and identified by immunofluorescence staining and western blot analysis for FSP-1, α-SMA, FAP, and vimentin expression. RNA-sequencing was used to compare the transcriptomes between CAFs and NFs. The expressions of FAP, lumican, and α-SMA, human cytokine array, and Transwell assay were used to assess the transformation of NFs to CAFs. CCK-8 assay, colony formation, flow cytometry, Transwell assay, and nude mouse xenograft model were used to determine the effects of Serpin E1 on cell proliferation and metastasis in vitro and in vivo. Finally, Serpin E1 and/or FAP expression was measured in H. pylori-infected gerbil gastric mucosa and human gastric cancer tissues. Results Gastric CAFs are inflammatory CAFs with α-SMAlowFAPhighlumicanhigh. The interplay of H. pylori, fibroblasts, and cancer cells promotes the transition of NFs to CAFs by inducing cytokine release, especially Serpin E1. Long-term H. pylori infection and CAFs induce Serpin E1 expression in gerbil gastric tissues and human gastric cancer cells. Serpin E1 overexpression enhances the growth, migration, invasion of gastric cancer cells in vitro, and xenograft tumor growth in nude mice via inducing angiogenesis. Serpin E1 and FAP were highly expressed in cancer cells and CAFs of gastric cancer tissues, respectively, and a good correlation was observed between their expression. Higher Serpin E1 expression is negatively associated with the overall survival of patients with gastric cancer. Conclusions The interplay of H. pylori, fibroblasts, and cancer cells induced Serpin E1 expression to promote the activation of NFs to CAFs and gastric carcinogenesis. Targeting Serpin E1 will provide a promising therapeutic strategy for gastric cancer by disrupting the interaction between H. pylori, CAFs, and gastric cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03537-x.
Collapse
Affiliation(s)
- Xueshu Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, Guizhou Cancer Hospital, Guiyang, China
| | - Wei Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Wenling Wang
- Department of Abdominal Oncology, Guizhou Cancer Hospital, Guiyang, China
| | - Yining Xiang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hang Yuan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| |
Collapse
|