1
|
Miron-Toruno MF, Morett E, Aguilar-Ordonez I, Reynolds AW. Genome-Wide Selection Scans in Mexican Indigenous Populations Reveal Recent Signatures of Pathogen and Diet Adaptation. Genome Biol Evol 2025; 17:evaf043. [PMID: 40070201 PMCID: PMC11954594 DOI: 10.1093/gbe/evaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Whole-genome scans for natural selection signatures across Mexican indigenous populations remain underrepresented in the literature. Here, we conducted the first comparative analysis of genetic adaptation in Mexican indigenous populations using whole-genome sequencing data from 76 individuals representing 27 different ethnic groups in Mexico. We divided the cohort into northern, central, and southern populations and identified signals of natural selection within and across populations. We find evidence of adaptation to pathogenic environments in all our populations, including significant signatures in the Duffy blood group gene in central Mexican indigenous populations. Despite each region exhibiting unique local adaptation profiles, selection signatures on ARHGAP15, VGLL4, LINGO2, SYNDIG1, and TFAP2B were common to all populations. Our results also suggest that selection signatures falling within enhancers or promoters are usually connected to noncoding features, with notable exceptions like ARHGAP15 and GTDC1. This paper provides new evidence on the selection landscape of Mexican indigenous populations and lays the foundation for additional work on Mexican phenotypic characterization.
Collapse
Affiliation(s)
- Maria Fernanda Miron-Toruno
- Department of Anthropology, Baylor University, Waco, TX 76706, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), México, Morelos 62210, México
| | - Israel Aguilar-Ordonez
- Jefatura de Supercómputo, Subdirección de Bioinformática, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, México
| | - Austin W Reynolds
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Pilling OA, Sundararaman SA, Brisson D, Beiting DP. Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment. PLoS Pathog 2024; 20:e1012418. [PMID: 39264872 PMCID: PMC11392400 DOI: 10.1371/journal.ppat.1012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sesh A. Sundararaman
- Department of Pediatrics, Children’s Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Picón-Jaimes YA, Lozada-Martinez ID, Forero Buelvas MC, Ardila Sarmiento AF, Serrano Baez GA, Nazareno Erazo DY, Cuastumal Martínez JD, Ruiz-Gutierrez FK, Carreño Barrera VD. Evolution of Plasmodium vivax and resistance patterns for infection based on Duffy genotype and phenotype. LE INFEZIONI IN MEDICINA 2023; 31:350-358. [PMID: 37701383 PMCID: PMC10495050 DOI: 10.53854/liim-3103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 09/14/2023]
Abstract
The Duffy protein, a transmembrane molecule, acts as a receptor for various chemokines and facilitates binding between reticulocytes and the Plasmodium Duffy antigen binding protein. Duffy expression is associated with the Duffy chemokine receptor antigen genotype on chromosome 1 and exhibits variation across different geographic regions. Traditionally, the Duffy negative genotype and phenotype have been described to confer a certain level of protection against infection and symptom development. However, recent data suggest a shift in this behavior, with significantly higher prevalence observed in individuals with Duffy negative genotype or phenotype. Given that malaria is an endemic vector-borne disease in regions of Asia, Africa, and Latin America, posing a substantial global burden of disease and prioritizing public and global health, identifying evolutionary changes in infection and resistance patterns holds great importance for the design of strategies and reevaluation of conventional interventions. Hence, the aim of this review was to analyze the evolution of Plasmodium vivax and infection resistance patterns based on Duffy genotype and phenotype. The distribution of genotypes, phenotypes, and polymorphisms of P. vivax ligands and erythrocyte receptors varies geographically, notably resistance patterns of this microorganism in individuals with Duffy negative genotype and phenotype have significantly changed compared to studies conducted 30 years ago. The prevalence of vivax malaria in individuals with a Duffy negative status can reach up to 100%. Consequently, prioritizing research on this topic is essential for public health.
Collapse
Affiliation(s)
| | - Ivan David Lozada-Martinez
- Epidemiology Program, Department of Graduate Studies in Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Deciphering Diets and Lifestyles of Prehistoric Humans through Paleoparasitology: A Review. Genes (Basel) 2023; 14:genes14020303. [PMID: 36833230 PMCID: PMC9957072 DOI: 10.3390/genes14020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Parasites have affected and coevolved with humans and animals throughout history. Evidence of ancient parasitic infections, particularly, reside in archeological remains originating from different sources dating to various periods of times. The study of ancient parasites preserved in archaeological remains is known as paleoparasitology, and it initially intended to interpret migration, evolution, and dispersion patterns of ancient parasites, along with their hosts. Recently, paleoparasitology has been used to better understand dietary habits and lifestyles of ancient human societies. Paleoparasitology is increasingly being recognized as an interdisciplinary field within paleopathology that integrates areas such as palynology, archaeobotany, and zooarchaeology. Paleoparasitology also incorporates techniques such as microscopy, immunoassays, PCR, targeted sequencing, and more recently, high-throughput sequencing or shotgun metagenomics to understand ancient parasitic infections and thus interpret migration and evolution patterns, as well as dietary habits and lifestyles. The present review covers the original theories developed in the field of paleoparasitology, as well as the biology of some parasites identified in pre-Columbian cultures. Conclusions, as well as assumptions made during the discovery of the parasites in ancient samples, and how their identification may aid in better understanding part of human history, ancient diet, and lifestyles are discussed.
Collapse
|
5
|
Rougeron V, Daron J, Fontaine MC, Prugnolle F. Evolutionary history of Plasmodium vivax and Plasmodium simium in the Americas. Malar J 2022; 21:141. [PMID: 35505431 PMCID: PMC9066938 DOI: 10.1186/s12936-022-04132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. Plasmodium vivax is the most prevalent human-infecting species in the Americas. However, the origins of this parasite in this continent are still debated. Similarly, it is now accepted that the existence of Plasmodium simium is explained by a P. vivax transfer from humans to monkey in America. However, many uncertainties still exist concerning the origin of the transfer and whether several transfers occurred. In this review, the most recent studies that addressed these questions using genetic and genomic approaches are presented.
Collapse
Affiliation(s)
- Virginie Rougeron
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
| | - Josquin Daron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France
| | - Michael C Fontaine
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France.,Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Franck Prugnolle
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
| |
Collapse
|
6
|
Mario-Vásquez JE, Naranjo-González CA, Montiel J, Zuluaga LM, Vásquez AM, Tobón-Castaño A, Bedoya G, Segura C. Association of variants in IL1B, TLR9, TREM1, IL10RA, and CD3G and Native American ancestry on malaria susceptibility in Colombian populations. INFECTION GENETICS AND EVOLUTION 2020; 87:104675. [PMID: 33316430 DOI: 10.1016/j.meegid.2020.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Host genetics is an influencing factor in the manifestation of infectious diseases. In this study, the association of mild malaria with 28 variants in 16 genes previously reported in other populations and/or close to ancestry-informative markers (AIMs) selected was evaluated in an admixed 736 Colombian population sample. Additionally, the effect of genetic ancestry on phenotype expression was explored. For this purpose, the ancestral genetic composition of Turbo and El Bagre was determined. A higher Native American ancestry trend was found in the population with lower malaria susceptibility [odds ratio (OR) = 0.416, 95% confidence interval (95% CI) = 0.234-0.740, P = 0.003]. Three AIMs presented significant associations with the disease phenotype (MID1752, MID921, and MID1586). The first two were associated with greater malaria susceptibility (D/D, OR = 2.23, 95% CI = 1.06-4.69, P = 0.032 and I/D-I/I, OR = 2.14, 95% CI = 1.18-3.87, P = 0.011, respectively), and the latter has a protective effect on the appearance of malaria (I/I, OR = 0.18, 95% CI = 0.08-0.40, P < 0.0001). After adjustment by age, sex, municipality, and genetic ancestry, genotype association analysis showed evidence of association with malaria susceptibility for variants in or near IL1B, TLR9, TREM1, IL10RA, and CD3G genes: rs1143629-IL1B (G/A-A/A, OR = 0.41, 95% CI = 0.21-0.78, P = 0.0051), rs352139-TLR9 (T/T, OR = 0.28, 95% CI = 0.11-0.72, P = 0.0053), rs352140-TLR9 (C/C, OR = 0.41, 95% CI = 0.20-0.87, P = 0.019), rs2234237-TREM1 (T/A-A/A, OR = 0.43, 95% CI = 0.23-0.79, P = 0.0056), rs4252246-IL10RA (C/A-A/A, OR = 2.11, 95% CI = 1.18-3.75, P = 0.01), and rs1561966-CD3G (A/A, OR = 0.20, 95% CI = 0.06-0.69, P = 0.0058). The results showed the participation of genes involved in immunological processes and suggested an effect of ancestral genetic composition over the traits analyzed. Compared to the paisa population (Antioquia), Turbo and El Bagre showed a strong decrease in European ancestry and an increase in African and Native American ancestries. Also, a novel association of two single nucleotide polymorphisms with malaria susceptibility was identified in this study.
Collapse
Affiliation(s)
- Jorge Eliécer Mario-Vásquez
- Grupo Genética Molecular (GENMOL), Universidad de Antioquia, Carrera 53 No. 61-30, Lab 430. Medellín, Colombia
| | | | - Jehidys Montiel
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Lina M Zuluaga
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Ana M Vásquez
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Alberto Tobón-Castaño
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Gabriel Bedoya
- Grupo Genética Molecular (GENMOL), Universidad de Antioquia, Carrera 53 No. 61-30, Lab 430. Medellín, Colombia
| | - Cesar Segura
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia.
| |
Collapse
|