1
|
Kowalczyk A, Twarowski B, Fecka I, Tuberoso CIG, Jerković I. Thymol as a Component of Chitosan Systems-Several New Applications in Medicine: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:362. [PMID: 38337895 PMCID: PMC10856996 DOI: 10.3390/plants13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Thymol, a plant-derived monoterpene phenol known for its broad biological activity, has often been incorporated into chitosan-based biomaterials to enhance therapeutic efficacy. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we conducted a systematic literature review from 2018 to 2023, focusing on the biomedical implications of thymol-loaded chitosan systems. A review of databases, including PubMed, Scopus, and Web of Science was conducted using specific keywords and search criteria. Of the 90 articles, 12 were selected for the review. Thymol-loaded chitosan-based nanogels (TLCBS) showed improved antimicrobial properties, especially against multidrug-resistant bacterial antagonists. Innovations such as bipolymer nanocarriers and thymol impregnated with photosensitive chitosan micelles offer advanced bactericidal strategies and show potential for bone tissue regeneration and wound healing. The incorporation of thymol also improved drug delivery efficiency and biomechanical strength, especially when combined with poly(dimethylsiloxane) in chitosan-gelatin films. Thymol-chitosan combinations have also shown promising applications in oral delivery and periodontal treatment. This review highlights the synergy between thymol and chitosan in these products, which greatly enhances their therapeutic efficacy and highlights the novel use of essential oil components. It also highlights the novelty of the studies conducted, as well as their limitations and possible directions for the development of integrated substances of plant and animal origin in modern and advanced medical applications.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Bartosz Twarowski
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy;
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| |
Collapse
|
2
|
Gao Y, Li D. Antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. FEMS Microbiol Lett 2024; 371:fnae066. [PMID: 39138064 DOI: 10.1093/femsle/fnae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Garviecin LG34 produced by Lactococcus garvieae LG34 exhibits wide-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. This work aimed at clarifying the antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. To determine the concentration for the bacteriocin antimicrobial mode experiments, the minimum inhibitory concentration of garviecin LG34 against S. typhimurium CICC21484 was determined as 0.25 mg/ml. Garviecin LG34 decreased the viable count of S. typhimurium CICC21484 and its antibacterial activity was the dose and time dependant. Garviecin LG34 led to the dissipation of transmembrane potential, the rise in the extracellular conductivity, UV-absorbing material at 260 nm, and LDH level of S. typhimurium CICC21484. Scanning electron micrographs results shown that garviecin LG34 cause dramatic deformation and fragmentation including the flagellum shedding, pores formation in surface, and even completely breakage of S. typhimurium cell. Moreover, garviecin LG34 decreased the intracellular ATP level. The results of this study demonstrated that garviecin LG34 can destroy cell structure, increase membrane permeability of S. typhimurium, thereby might be used as biopreservative for treating food borne and salmonellosis resulting from Gram-negative bacterium S. typhimurium.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| |
Collapse
|
3
|
Gress-Antonio CD, Rivero-Perez N, Marquina-Bahena S, Alvarez L, Zaragoza-Bastida A, Martínez-Juárez VM, Sosa-Gutierrez CG, Ocampo-López J, Zepeda-Bastida A, Ojeda-Ramírez D. Litsea glaucescens Kuth possesses bactericidal activity against Listeria monocytogenes. PeerJ 2023; 11:e16522. [PMID: 38054017 PMCID: PMC10695109 DOI: 10.7717/peerj.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Background Litsea glaucencens Kuth is an aromatic plant used for food seasoning food and in Mexican traditional medicine. Among, L. glaucencens leaves properties, it has proven antibacterial activity which can be used against opportunistic pathogens like Listeria monocytogenes, a foodborne bacteria that is the causal agent of listeriosis, a disease that can be fatal in susceptible individuals. The aim of this work was to investigate the antibacterial activity of L. glaucescens Kuth leaf extracts against L. monocytogenes and to identify its bioactive components. Material and Methods L. glaucences leaves were macerated with four solvents of different polarity (n-hexane, dichloromethane, ethyl acetate, and methanol). To determine the capacity to inhibit bacterial proliferation in vitro, agar diffusion and microdilution methods were used. Next, we determined the minimal bactericidal concentration (MBC). Finally, we determined the ratio of MBC/MIC. Metabolites present in the active methanolic extract from L. glaucescens Kuth (LgMeOH) were purified by normal-phase open column chromatography. The structure of the antibacterial metabolite was determined using nuclear magnetic resonance (1H, 13C, COSY, HSQC) and by comparison with known compounds. Results The LgMeOH extract was used to purify the compound responsible for the observed antimicrobial activity. This compound was identified as 5,7-dihydroxyflavanone (pinocembrin) by analysis of its spectroscopic data and comparison with those described. The MIC and MBC values obtained for pinocembrin were 0.68 mg/mL, and the ratio MBC/MIC for both LgMeOH and pinocembrin was one, which indicates bactericidal activity. Conclusion L. glaucences Kuth leaves and its metabolite pinocembrin can be used to treat listeriosis due the bactericidal activity against L. monocytogenes.
Collapse
Affiliation(s)
- Carlos David Gress-Antonio
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Silvia Marquina-Bahena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Víctor Manuel Martínez-Juárez
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Carolina G. Sosa-Gutierrez
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Juan Ocampo-López
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Armando Zepeda-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
| |
Collapse
|
4
|
Zammit Young GW, Blundell R. A review on the phytochemical composition and health applications of honey. Heliyon 2023; 9:e12507. [PMID: 36755588 PMCID: PMC9900486 DOI: 10.1016/j.heliyon.2022.e12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Though honey has long been used as medicine, there is a scarcity of knowledge on how it interacts with the body. Scope and approach While different types of honey have different chemical and medicinal properties according to their origin, this narrative review seeks to analyse the current knowledge on the chemical composition and therapeutic use of honey. With numerous chemical components, honey has a range of health benefits in multiple disciplines of medicine, and provides an interesting prospect in chemical analysis with regards to identification of its origin. Key findings and conclusions There is a great potential for the use of honey in medicine, primarily due to its antioxidant and antimicrobial properties. Recent studies on the phenolic and enzymatic components of honey have made honey's therapeutic method of action in relation to the above properties clearer, still more research needs to be conducted and more innovations need to be tested, for the full potential of honey to be understood.
Collapse
Affiliation(s)
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Malta
| |
Collapse
|
5
|
Tous Mohedano M, Mao J, Chen Y. Optimization of Pinocembrin Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2022; 12:144-152. [PMID: 36534476 PMCID: PMC9872169 DOI: 10.1021/acssynbio.2c00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The flavonoid pinocembrin and its derivatives have gained increasing interest for their benefits on human health. While pinocembrin and its derivatives can be produced in engineered Saccharomyces cerevisiae, yields remain low. Here, we describe novel strategies for improved de novo biosynthesis of pinocembrin from glucose based on overcoming existing limitations in S. cerevisiae. First, we identified cinnamic acid as an inhibitor of pinocembrin synthesis. Second, by screening for more efficient enzymes and optimizing the expression of downstream genes, we reduced cinnamic acid accumulation. Third, we addressed other limiting factors by boosting the availability of the precursor malonyl-CoA, while eliminating the undesired byproduct 2',4',6'-trihydroxy dihydrochalcone. After optimizing cultivation conditions, 80 mg/L pinocembrin was obtained in a shake flask, the highest yield reported for S. cerevisiae. Finally, we demonstrated that pinocembrin-producing strains could be further engineered to generate 25 mg/L chrysin, another interesting flavone. The strains generated in this study will facilitate the production of flavonoids through the pinocembrin biosynthetic pathway.
Collapse
|
6
|
Mendez-Pfeiffer P, Ballesteros-Monrreal MG, Gaona-Ochoa J, Juarez J, Gastelum-Cabrera M, Montaño-Leyva B, Arenas-Hernández M, Caporal-Hernandez L, Ortega-García J, Barrios-Villa E, Velazquez C, Valencia D. Biosynthesis of Silver Nanoparticles Using Seasonal Samples of Sonoran Desert Propolis: Evaluation of Its Antibacterial Activity against Clinical Isolates of Multi-Drug Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14091853. [PMID: 36145600 PMCID: PMC9503092 DOI: 10.3390/pharmaceutics14091853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Multi-drug resistant (MDR) bacteria have gained importance as a health problem worldwide, and novel antibacterial agents are needed to combat them. Silver nanoparticles (AgNPs) have been studied as a potent antimicrobial agent, capable of countering MDR bacteria; nevertheless, their conventional synthesis methods can produce cytotoxicity and environmental hazards. Biosynthesis of silver nanoparticles has emerged as an alternative to reduce the cytotoxic and environmental problems derived from their chemical synthesis, using natural products as a reducing and stabilizing agent. Sonoran Desert propolis (SP) is a poplar-type propolis rich in polyphenolic compounds with remarkable biological activities, such as being antioxidant, antiproliferative, and antimicrobial, and is a suitable candidate for synthesis of AgNPs. In this study, we synthesized AgNPs using SP methanolic extract (SP-AgNPs) and evaluated the reduction capacity of their seasonal samples and main chemical constituents. Their cytotoxicity against mammalian cell lines and antibacterial activity against multi-drug resistant bacteria were assessed. Quercetin and galangin showed the best-reduction capacity for synthesizing AgNPs, as well as the seasonal sample from winter (SPw-AgNPs). The SPw-AgNPs had a mean size of around 16.5 ± 5.3 nm, were stable in different culture media, and the presence of propolis constituents was confirmed by FT-IR and HPLC assays. The SPw-AgNPs were non-cytotoxic to ARPE-19 and HeLa cell lines and presented remarkable antibacterial and antibiofilm activity against multi-drug resistant clinical isolates, with E. coli 34 and ATCC 25922 being the most susceptible (MBC = 25 μg/mL), followed by E. coli 2, 29, 37 and PNG (MBC = 50 μg/mL), and finally E. coli 37 and S. aureus ATCC 25923 (MBC = 100 μg/mL). These results demonstrated the efficacy of SP as a reducing and stabilizing agent for synthesis of AgNPs and their capacity as an antibacterial agent.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Manuel G. Ballesteros-Monrreal
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Jesus Gaona-Ochoa
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Josue Juarez
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | | | - Beatriz Montaño-Leyva
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Margarita Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Pue, Mexico
| | - Liliana Caporal-Hernandez
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Jesús Ortega-García
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Edwin Barrios-Villa
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Dora Valencia
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
- Correspondence:
| |
Collapse
|