1
|
Shao S, Liu K, Du J, Yin C, Wang M, Wang Y. Functional characterization of serine proteinase inhibitor Kazal-Type in the red claw crayfish Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109525. [PMID: 38537926 DOI: 10.1016/j.fsi.2024.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Serine protease inhibitors Kazal type (SPINKs) function in physiological and immunological processes across multicellular organisms. In the present study, we identified a SPINK gene, designated as CqSPINK, in the red claw crayfish Cherax quadricarinatus, which is the ortholog of human SPINK5. The deduced CqSPINK contains two Kazal domains consisting of 45 amino acid residues with a typical signature motif C-X3-C-X5-PVCG-X5-Y-X3-C-X6-C-X12-14-C. Each Kazal domain contains six conserved cysteine residues forming three pairs of disulfide bonds, segmenting the structure into three rings. Phylogenetic analysis revealed CqSPINK as a homolog of human SPINK5. CqSPINK expression was detected exclusively in hepatopancreas and epithelium, with rapid up-regulation in hepatopancreas upon Vibrio parahaemolyticus E1 challenge. Recombinant CqSPINK protein (rCqSPINK) was heterologously expressed in Escherichia coli and purified for further study. Proteinase inhibition assays demonstrated that rCqSPINK could potently inhibit proteinase K and subtilisin A, weakly inhibit α-chymotrypsin and elastase, but extremely weak inhibit trypsin. Furthermore, CqSPINK inhibited bacterial secretory proteinase activity from Bacillus subtilis, E. coli, and Staphylococcus aureus, and inhibited B. subtilis growth. These findings suggest CqSPINK's involvement in antibacterial immunity through direct inhibition of bacterial proteases, contributing to resistance against pathogen invasion.
Collapse
Affiliation(s)
- Shuoru Shao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Kexin Liu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jiansen Du
- Qingdao International Travel Healthcare Center, Qingdao Customs District PR China, Qingdao, 266000, China
| | - Chenlin Yin
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Yan Wang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
2
|
Yang YH, Wang R, Li M, Yang HZ, Huang GH, Ma KY, Qiu GF, Lin Y. Comparative transcriptomes analysis of the ovary reveals potential ovarian development-related genes and pathways in Macrobrachium rosenbergii. INVERTEBR REPROD DEV 2022. [DOI: 10.1080/07924259.2022.2156822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yan-Hao Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, MiMinistry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University)ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai 201306, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| | - Rui Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| | - Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| | - Hui-Zan Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| | - Guang-Hua Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| | - Ke-Yi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, MiMinistry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University)ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai 201306, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, MiMinistry of Agriculture (Shanghai Ocean University), Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University)ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai 201306, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, 530021, Nanning, Guangxi, China
| |
Collapse
|
3
|
Comparative Transcriptomics of Gonads Reveals the Molecular Mechanisms Underlying Gonadal Development in Giant Freshwater Prawns (Macrobrachium rosenbergii). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is a prawn that has economic significance throughout the world. It exhibits sex-related growth dimorphism, whereby the males grow significantly more rapidly than the females. Therefore, a study on the molecular regulatory mechanism, which underlies the sexual differentiation of M. rosenbergii, is of both scientific and commercial importance. However, a scarcity of genomic and transcriptomic resources severely limits our knowledge of the sexual differentiation mechanisms in M. rosenbergii. Here, transcriptome sequencing of several gonadic samples of males and females in M. rosenbergii was performed to investigate the molecular basis underlying gonadal development. Our results showed that 2149 unigenes presented as differentially expressed genes (DEGs) in the ovaries of females compared to the testes of males, which contained 484 down-regulated and 1665 up-regulated genes. Enrichment analysis of DEGs revealed many of these genes to be related to sexual differentiation and gonadal development. From our transcriptome analyses, and as confirmed by quantitative real-time PCR, male-related genes (Mrr, MRPINK, IR, IAGBP, TESK1, and dsx) in the testes were significantly up-regulated, and female-related genes (ERR, Sxl3, cyclinB, Dmrt99B, PPP2A, and ADCY9) in the ovaries were also significantly up-regulated. This indicates the potential role these genes play in the gonadal development of M. rosenbergii. Furthermore, multiple signal transduction pathways relating to gonadal maturation and spermatogenesis, including MAPK, were identified herein. Our data also supports previous ideas that IAG and IAGBP-IR signaling schemes could help in the regulation of testis’ development in M. rosenbergii and the ERR gene could regulate ovarian development by affecting the expression of cyclinB, PPP2A, and ADCY9. The data from this study provides incredibly usefully genomic resources for future research on the sexual differentiation and practical aquaculture of M. rosenbergii.
Collapse
|
4
|
Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L. Characterization and function analysis of a Kazal-type serine proteinase inhibitor in the red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103871. [PMID: 32946920 DOI: 10.1016/j.dci.2020.103871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Kazal-type serine proteinase inhibitors (KPIs) function in physiological and immunological processes requiring proteinase action. In the present study, the first Cherax quadricarinatus KPI gene (designated CqKPI) was identified and characterized. The open reading frame of CqKPI contains 405 nucleotides and encodes a protein of 134 amino acids. CqKPI has two Kazal domains comprising 44 amino acid residues with the conserved amino acid sequence C-X3-C-X7-C-X6-Y-X3-C-X6-C-X12-C. Each Kazal domain has six conserved cysteine residues, which can form a structural conformation of three pairs of disulfide bonds stabilizing the Kazal domain. CqKPI exhibited high similarity with previously identified KPIs from crayfish hemocytes. The results of tissue distribution showed that CqKPI had the highest expression level in hemocytes, and this was in agreement with phylogenic relationships. Recombinant CqKPI (rCqKPI) was heterologously expressed in Escherichia coli and purified for further study. The proteinase inhibition assays suggested that rCqKPI could potently inhibit elastase and weakly inhibit trypsin, subtilisin A, and proteinase K, but not α-chymotrypsin. It can firmly bind to Bacillus hwajinpoensis, Staphylococcus aureus, and Vibrio parahaemolyticus, with weak binding to Candida albicans. In addition, CqKPI inhibited bacterial secretory proteinase activity and inhibited the growth of B. hwajinpoensis and C. albicans. These data suggest that CqKPI might be involved in anti-bacterial immunity, acting as an inhibitor of the proteinase cascade in the resistance to invasion of pathogens.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; The Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of China, Sanya, 572024, China; Center for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
5
|
Comparative Transcriptome Analysis of Gonads for the Identification of Sex-Related Genes in Giant Freshwater Prawns ( Macrobrachium Rosenbergii) Using RNA Sequencing. Genes (Basel) 2019; 10:genes10121035. [PMID: 31835875 PMCID: PMC6947849 DOI: 10.3390/genes10121035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M. rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M. rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1196 base pair (bp) and N50 of 2195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.
Collapse
|
6
|
Faiz ZM, Mardhiyyah MP, Mohamad A, Hidir A, Nurul-Hidayah A, Wong L, Jasmani S, Ikhwanuddin M. Identification and relative abundances of mRNA for a gene encoding the vWD domain and three Kazal-type domains in the ovary of giant freshwater prawns, Macrobrachium rosenbergii. Anim Reprod Sci 2019; 209:106143. [PMID: 31514941 DOI: 10.1016/j.anireprosci.2019.106143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Understanding Macrobrachium rosenbergii ovarian maturation control at the genome level is an important aspect for increasing larvae production. In this study, an ovarian maturation related gene, M. rosenbergii vWD domain and three Kazal-type domains of a gene (MrvWD-Kazal) have been studied. The MrvWD-Kazal gene was isolated using a rapid amplification of cDNA end (RACE) method and the relative abundances of MrvWD-Kazal mRNA in the ovary, hepatopancreas, stomach, intestine and gill were determined by using the quantitative PCR technique. The MrvWD-Kazal gene is composed of 2194 bp with an open reading frame (ORF) of 1998 bp encoding 665 amino acids and has great similarity to the M. nipponense vWD-Kazal gene (91%). The qPCR analyses indicated the relative abundance of MrvWD-Kazal mRNA transcript varied among different stages of ovarian function (P < 0.05), but there were no differences abundance in hepatopancreas, stomach, intestine and gill (P> 0.05). In the ovary, relative abundance of MrvWD-Kazal mRNA transcript gradually increased with ovarian maturation from Stages 1 (Spent; 1.00-fold), to 2 (Proliferative; 3.47-fold) to 3 (Premature; 6.18-fold) and decreased at Stage 4 (Mature; 1.31-fold). Differential relative abundances of MrvWD-Kazal mRNA transcript in the ovary indicate the MrvWD-Kazal protein may have an important function in ovarian maturation of M. rosenbergii. The results of this study also indicate the MrvWD-Kazal is not involved in regulation of the reproductive related function of the hepatopancreas, digestive system (stomach and intestine) and respiratory system (gill).
Collapse
Affiliation(s)
- Zakaria Muhammad Faiz
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Mohd Pauzi Mardhiyyah
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Aslah Mohamad
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ariffin Hidir
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Amirdin Nurul-Hidayah
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Lilian Wong
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Safiah Jasmani
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Terengganu, Malaysia.
| |
Collapse
|
7
|
Guo W, Wu Z, Yang L, Cai Z, Zhao L, Zhou S. Juvenile hormone–dependent Kazal‐type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB J 2018; 33:917-927. [DOI: 10.1096/fj.201801068r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Zhongxia Wu
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Libin Yang
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Zhaokui Cai
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Lianfeng Zhao
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Shutang Zhou
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| |
Collapse
|
8
|
Yang L, Mei Y, Fang Q, Wang J, Yan Z, Song Q, Lin Z, Ye G. Identification and characterization of serine protease inhibitors in a parasitic wasp, Pteromalus puparum. Sci Rep 2017; 7:15755. [PMID: 29147019 PMCID: PMC5691223 DOI: 10.1038/s41598-017-16000-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Serine protease inhibitors (SPIs) regulate protease-mediated activities by inactivating their cognate proteinases, and are involved in multiple physiological processes. SPIs have been extensively studied in vertebrates and invertebrates; however, little SPI information is available in parasitoids. Herein, we identified 57 SPI genes in total through the genome of a parasitoid wasp, Pteromalus puparum. Gene structure analyses revealed that these SPIs contain 7 SPI domains. Depending on their mode of action, these SPIs can be categorized into serpins, canonical inhibitors and alpha-2-macroglobulins (A2Ms). For serpins and canonical inhibitors, we predicted their putative inhibitory activities to trypsin/chymotrypsin/elastase-like enzymes based on the amino acids in cleaved reactive sites. Sequence alignment and phylogenetic tree indicated that some serpins similar to known functional inhibitory serpins may participate in immune responses. Transcriptome analysis also showed some canonical SPI genes displayed distinct expression patterns in the venom gland and this was confirmed by quantitative real-time PCR (qPCR) analysis, suggesting their specific physiological functions as venom proteins in suppressing host immune responses. The study provides valuable information to clarify the functions of SPIs in digestion, development, reproduction and innate immunity.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaotian Mei
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Lafontaine A, Baiwir D, Joaquim-Justo C, De Pauw E, Lemoine S, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:306-314. [PMID: 28371731 DOI: 10.1016/j.ecoenv.2017.03.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans.
Collapse
Affiliation(s)
- Anne Lafontaine
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| | - Dominique Baiwir
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Célia Joaquim-Justo
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Soazig Lemoine
- DYNECAR-UMR BOREA (MNHN/CNRS 7208/IRD207/UPMC/UA), University of the French West Indies, Campus de Fouillole, F-97110 Pointe-à-Pitre, Guadeloupe, France
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| |
Collapse
|
10
|
Jung H, Yoon BH, Kim WJ, Kim DW, Hurwood DA, Lyons RE, Salin KR, Kim HS, Baek I, Chand V, Mather PB. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction. Int J Mol Sci 2016; 17:ijms17050690. [PMID: 27164098 PMCID: PMC4881516 DOI: 10.3390/ijms17050690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Byung-Ha Yoon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305806, Korea.
- Department of Bioinformatics, University of Science and Technology, Daejeon 305333, Korea.
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Dong-Wook Kim
- All Bio Technology Co., LTD, Internet Business Incubation Center, Mokweon University, Daejeon 302729, Korea.
| | - David A Hurwood
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Russell E Lyons
- School of Veterinary Science, University of Queensland, Queensland 4067, Australia.
| | - Krishna R Salin
- School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609735, Korea.
| | - Ilseon Baek
- Division of Marine Technology, Chonnam National University, Yeosu 550250, Korea.
| | - Vincent Chand
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Peter B Mather
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| |
Collapse
|
11
|
Kumaresan V, Harikrishnan R, Arockiaraj J. A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity. FISH & SHELLFISH IMMUNOLOGY 2015; 42:430-438. [PMID: 25433138 DOI: 10.1016/j.fsi.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Kazal-type serine protease inhibitor (KSPI) is a pancreatic secretary trypsin inhibitor which involves in various cellular component regulations including development and defense process. In this study, we have characterized a KSPI cDNA sequence of freshwater striped murrel fish Channa striatus (Cs) at molecular level. Cellular location analysis predicted that the CsKSPI was an extracellular protein. The domain analysis showed that the CsKSPI contains a Kazal domain at 47-103 along with its family signature between 61 and 83. Phylogenetically, CsKSPI is closely related to KSPI from Maylandia zebra and formed a sister group with mammals. The 2D structure of CsKSPI showed three α-helical regions which are connected with random coils, one helix at signal sequence and two at the Kazal domain region. The relative gene expression showed that the CsKSPI was highly expressed in gills and its expression was induced upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and poly I:C (a viral analogue) challenge. The CsKSPI recombinant protein was produced to characterize and study the CsKSPI gene specific functions. The recombinant CsKSPI strongly inhibited trypsin compared to other tested proteases. The results of the kinetic activity of CsKSPI against trypsin was V(max)s = 1.62 nmol/min, K(M)s = 0.21 mM and K(i)s = 15.37 nM. Moreover, the recombinant CsKSPI inhibited the growth of Gram-negative bacteria A. hydrophila at 20 μM and Gram-positive bacteria Bacillus subtilis at the MIC50 of 15 μM. Overall, the study indicated that the CsKSPI was a potential trypsin inhibitor which involves in antimicrobial activity.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramaswamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Qian YQ, Li Y, Yang F, Yu YQ, Yang JS, Yang WJ. Two Kazal-type protease inhibitors from Macrobrachium nipponense and Eriocheir sinensis: comparative analysis of structure and activities. FISH & SHELLFISH IMMUNOLOGY 2012; 32:446-458. [PMID: 22200638 DOI: 10.1016/j.fsi.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/02/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
Kazal-type inhibitors (KPIs) play important roles in many biological and physiological processes, such as blood clotting, the immune response and reproduction. In the present study, two male reproductive tract KPIs, termed Man-KPI and Ers-KPI, were identified in Macrobrachium nipponense and Eriocheir sinensis, respectively. The inhibitory activities of recombinant Man-KPI and Ers-KPI against chymotrypsin, elastase, trypsin and thrombin were determined. The results showed that both of them strongly inhibit chymotrypsin and elastase. Kinetic studies were performed to elucidate their inhibition mechanism. Furthermore, individual domains were also expressed to learn further which domain contributes to the inhibitory activities of intact KPIs. Only Man-KPI_domain3 is active in the inhibition of chymotrypsin and elastase. Meanwhile, Ers-KPI_domain2 and 3 are responsible for inhibition of chymotrypsin, and Ers-KPI_domains2, 3 and 4 are responsible for the inhibition of elastase. Meanwhile, the inhibitory activities of these two KPIs toward Macrobrachium rosenbergii, M. nipponense and E. sinensis sperm were compared with that of the Kazal-type peptidase inhibitor (MRPINK) characterized from the M. rosenbergii reproductive tract in a previous study. The results demonstrated that KPIs can completely inhibit the gelatinolytic activities of sperm proteases from their own species, while different levels of cross-inhibition were observed between KPI and proteases from different species. These results may provide new perspective to further clarify the mechanism of KPI-proteases interaction in the male reproductive system.
Collapse
Affiliation(s)
- Ye-Qing Qian
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Zhang F, Chen L, Qin J, Zhao W, Wu P. A novel gene with a vWD domain and three Kazal-type domains: Molecular cloning and expression in the ovary of the oriental river prawn, Macrobrachium nipponense. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Rimphanitchayakit V, Tassanakajon A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:377-386. [PMID: 19995574 DOI: 10.1016/j.dci.2009.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.
Collapse
Affiliation(s)
- Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | | |
Collapse
|
15
|
Cerenius L, Liu H, Zhang Y, Rimphanitchayakit V, Tassanakajon A, Gunnar Andersson M, Söderhäll K, Söderhäll I. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:69-75. [PMID: 19715720 DOI: 10.1016/j.dci.2009.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 05/28/2023]
Abstract
Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE-752 36 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li XC, Wang XW, Wang ZH, Zhao XF, Wang JX. A three-domain Kazal-type serine proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1229-1238. [PMID: 19616577 DOI: 10.1016/j.dci.2009.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
In crustaceans, Kazal-type serine proteinase inhibitors in hemolymph are believed to function as regulators of the host-defense reactions or inhibitors against proteinases from microorganisms. In this study, we report a Kazal-type serine proteinase inhibitor, named hcPcSPI1, from freshwater crayfish (Procambarus clarkii). We found that hcPcSPI1 is composed of a putative signal peptide, an RGD motif, and three tandem Kazal-type domains with the domain P1 residues L, L and E, respectively. Mainly, hcPcSPI1 was detected in hemocytes as well as in the heart, gills, and intestine at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that hcPcSPI1 in hemocytes was upregulated by the stimulation of Esherichia coli (8099) or became decreased after a white spot syndrome virus (WSSV) challenge. In addition, hcPcSPI1 and its three independent domains were overexpressed and purified to explore their potential functions. All four proteins inhibited subtilisin A and proteinase K, but not alpha-chymotypsin or trypsin. Recombinant hcPcSPI1 could firmly attach to Gram-negative bacteria E. coli and Klebsiella pneumoniae; Gram-positive bacteria Bacillus subtilis, Bacillus thuringiensis and Staphylococcus aureus; fungi Candida albicans and Saccharomyce cerevisiae, and only domain 1 was responsible for the binding to E. coli and S. aureus. In addition, recombinant hcPcSPI1 was also found to possess bacteriostatic activity against the B. subtilis and B. thuringiensis. Domains 2 and 3 contributed mainly to these bacteriostatic activities. All results suggested that hcPcSPI1 might play important roles in the innate immunity of crayfish.
Collapse
Affiliation(s)
- Xin-Cang Li
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|
17
|
Visetnan S, Donpudsa S, Supungul P, Tassanakajon A, Rimphanitchayakit V. Kazal-type serine proteinase inhibitors from the black tiger shrimp Penaeus monodon and the inhibitory activities of SPIPm4 and 5. FISH & SHELLFISH IMMUNOLOGY 2009; 27:266-274. [PMID: 19497371 DOI: 10.1016/j.fsi.2009.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 05/27/2023]
Abstract
Serine proteinase inhibitors (SPIs) play important roles in physiological and immunological processes involving proteinases in all multicellular organisms. In black tiger shrimp Penaeus monodon, nine different Kazal-type SPIs, namely SPIPm1-9, were identified from the cDNA libraries of hemocyte, hepatopancreas, hematopoietic tissue, ovary and lymphoid organ. They are multi-domain SPIs containing 2-7 and possibly more Kazal domains. Two interesting cDNA clones, SPIPm4 and SPIPm5 coding for two-domain Kazal-type SPIs, were identified from the heat-treated hemocyte cDNA libraries. The SPIPm4 and SPIPm5 consist of open reading frames of 387 and 399 bp coding for polypeptides of 128 and 132 amino acids with putative signal peptides of 21 and 19 amino acid residues and mature SPIs of 107 and 113 amino acid residues, respectively. Recombinant expression in an Escherichia coli expression system yielded recombinant proteins, rSPIPm4 and rSPIPm5, with molecular masses of 12.862 and 13.433 kDa, respectively. The inhibitory activities of SPIPm4 and SPIPm5 were tested against trypsin, chymotrypsin, subtilisin and elastase. The SPIPm4 exhibited potent inhibitory activity against subtilisin and weakly against chymotrypsin whereas the SPIPm5 strongly inhibited subtilisin and elastase. The inhibition was a competitive type with inhibition constants (K(i)) of 14.95 nM for SPIPm4 against subtilisin, 4.19 and 59.64 nM, respectively, for SPIPm5 against subtilisin and elastase. They had no bacteriostatic effect against Gram-positive bacteria: Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Gram-negative bacteria: Vibrio harveyi 639, E. coli JM109. Gene expression study revealed that the SPIPm5 gene was up-regulated in response to heat treatment suggesting the involvement of SPIs in stress responses.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|