1
|
Kalinowski CT, Larroquet L, Véron V, Robaina L, Izquierdo MS, Panserat S, Kaushik S, Fontagné-Dicharry S. Influence of Dietary Astaxanthin on the Hepatic Oxidative Stress Response Caused by Episodic Hyperoxia in Rainbow Trout. Antioxidants (Basel) 2019; 8:antiox8120626. [PMID: 31817693 PMCID: PMC6943655 DOI: 10.3390/antiox8120626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023] Open
Abstract
A 13-week feeding trial was carried out with juvenile rainbow trout to test two diets: a control diet without astaxanthin (AX) supplementation (CTRL diet), and a diet supplemented with 100 mg/kg of synthetic AX (ASTA diet). During the last week of the feeding trial, fish were exposed to episodic hyperoxia challenge for 8 consecutive hours per day. Episodic hyperoxia induced physiological stress responses characterized by a significant increase in plasma cortisol and hepatic glycogen and a decrease in plasma glucose levels. The decrease of plasma glucose and the increase of hepatic glycogen content due to episodic hyperoxia were emphasized with the ASTA diet. Hyperoxia led to an increase in thiobarbituric acid-reactive substances in the muscle, diminished by dietary AX supplementation in both liver and muscle. Muscle and liver AX were increased and decreased respectively after 7-day episodic hyperoxia, leading to an increase in flesh redness. This augment of muscle AX could not be attributed to AX mobilization, since plasma AX was not affected by hyperoxia. Moreover, hyperoxia decreased most of antioxidant enzyme activities in liver, whereas dietary AX supplementation specifically increased glutathione reductase activity. A higher mRNA level of hepatic glutathione reductase, thioredoxin reductase, and glutamate-cysteine ligase in trout fed the ASTA diet suggests the role of AX in glutathione and thioredoxin recycling and in de novo glutathione synthesis. Indeed, dietary AX supplementation improved the ratio between reduced and oxidized glutathione (GSH/GSSG) in liver. In addition, the ASTA diet up-regulated glucokinase and glucose-6-phosphate dehydrogenase mRNA level in the liver, signaling that dietary AX supplementation may also stimulate the oxidative phase of the pentose phosphate pathway that produces NADPH, which provides reducing power that counteracts oxidative stress. The present results provide a broader understanding of the mechanisms by which dietary AX is involved in the reduction of oxidative status.
Collapse
Affiliation(s)
- Carmen Tatiana Kalinowski
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Laurence Larroquet
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Vincent Véron
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Stéphane Panserat
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Sachi Kaushik
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Stéphanie Fontagné-Dicharry
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
- Correspondence: ; Tel.: +33-559515996
| |
Collapse
|
2
|
Evaluation of Ulva ohnoi as functional dietary ingredient in juvenile Senegalese sole (Solea senegalensis): Effects on the structure and functionality of the intestinal mucosa. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Schneebauer G, Hanel R, Pelster B. Anguillicola crassus impairs the silvering-related enhancements of the ROS defense capacity in swimbladder tissue of the European eel (Anguilla anguilla). J Comp Physiol B 2016; 186:867-77. [PMID: 27146148 PMCID: PMC5009179 DOI: 10.1007/s00360-016-0994-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/07/2023]
Abstract
In a process called silvering, European eels prepare for their long-distance migration from European freshwater systems to the Sargasso Sea for reproduction. During this journey, eels perform extended diel vertical migrations, and the concomitant changes in hydrostatic pressure significantly affect the swimbladder, functioning as a buoyancy organ. As the swimbladder is primarily filled with oxygen, the tissue has to cope with extreme hyperoxic conditions, which typically are accompanied by the generation of reactive oxygen species (ROS) and oxidative stress. In addition, since the introduction of the parasitic nematode Anguillicola crassus in the early 1980s, swimbladder function of most of the European eels is impaired by the infection with this parasite. However, the exact pathways to detoxify ROS and how these pathways are affected by silvering or the infection are still unknown. In swimbladder and muscle tissue from uninfected and infected yellow, and from uninfected and infected silver eels, we measured the level of lipid peroxidation, which increases with ROS stress. To assess the capacity of the ROS defense systems, we analyzed the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), and determined the concentration of the antioxidant glutathione (GSH + GSSG). In swimbladder tissue, we found increased concentrations of GSH + GSSG as well as higher activities of SOD, GPx and GR, suggesting that SOD and the glutathione cycle are important for ROS detoxification. Comparing swimbladder tissue of uninfected yellow with uninfected silver eels, the concentration of GSH + GSSG and the activity of SOD were higher after silvering, corresponding with lower levels of lipid peroxidation. Whereas in yellow eels the infection with A. crassus had no effect, in silver eels the capacity to cope with ROS was significantly impaired. In muscle tissue, silvering or the infection only affected the activity of SOD but in exactly the same way as in swimbladder tissue.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institut für Zoologie, Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | | | - Bernd Pelster
- Institut für Zoologie, Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria.
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Comparison of Integrated Responses to Nonlethal and Lethal Hypothermal Stress in Milkfish (Chanos chanos): A Proteomics Study. PLoS One 2016; 11:e0163538. [PMID: 27657931 PMCID: PMC5033585 DOI: 10.1371/journal.pone.0163538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022] Open
Abstract
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills.
Collapse
|
5
|
Singh SP, Sharma J, Ahmad T, Chakrabarti R. Oxygen stress: impact on innate immune system, antioxidant defence system and expression of HIF-1α and ATPase 6 genes in Catla catla. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:673-688. [PMID: 26588934 DOI: 10.1007/s10695-015-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Catla catla catla (2.28 ± 0.1 g) were exposed to six different levels of dissolved oxygen: 1 (DO-1), 3 (DO-3), 5 (DO-5), 7 (DO-7), 9 (DO-9) and 11 (DO-11) mg/L. DO-5 served as control. In DO-1 and DO-3, the number of red blood cells (RBC), lysozyme, respiratory burst activity and nitric oxide synthase were significantly (p < 0.05) lower compared to the control one. In DO-7 and DO-9, RBC and lysozyme were significantly (p < 0.05) higher compared to the control one. Thiobarbituric acid reactive substances was significantly (p < 0.05) higher in catla exposed at low (1 and 3 mg/L) and high (9 and 11 mg/L) dissolved oxygen compared to others. In muscles and hepatopancreas, reduced glutathione was significantly (p < 0.05) higher in DO-5 and DO-7 and in gills of DO-5 compared to others after 1 h. In muscles, glutathione S-transferase (GST) was significantly (p < 0.05) lower in DO-5 and DO-7 compared to others. In hepatopancreas, GST and glutathione peroxidise (GPx) were significantly (p < 0.05) higher in DO-1 and DO-3 compared to others. In gills, GPx was higher in DO-9 and DO-11 after 48 h. In brain, hypoxia-inducible factor (HIF)-1α mRNA level was induced in DO-1 and DO-3 compared to others after 1 h of exposure. In gills and hepatopancreas, HIF-1α mRNA level was significantly (p < 0.05) higher in DO-1 compared to others after 1 h. The ATPase 6 mRNA level was significantly (p < 0.05) higher in brain and hepatopancreas of DO-1 after 1 h and in gills and hepatopancreas of DO-3 and DO-9, respectively, after 48 h compared to others.
Collapse
Affiliation(s)
- Samar Pal Singh
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Tauqueer Ahmad
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. MOLECULAR BIOSYSTEMS 2016; 12:2024-35. [DOI: 10.1039/c5mb00788g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public.
Collapse
Affiliation(s)
- A. Marco-Ramell
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| | - A. M. de Almeida
- Instituto de Biologia Experimental e Tecnologica
- Oeiras
- Portugal
- CIISA/FMV – Centro Interdisciplinar de Investigação em Sanidade Animal
- Faculdade de Medicina Veterinária
| | - S. Cristobal
- Department of Clinical and Experimental Medicine
- Cell Biology
- Faculty of Medicine
- Linköping University
- Linköping
| | - P. Rodrigues
- CCMAR
- Center of Marine Science
- University of Algarve
- 8005-139 Faro
- Portugal
| | - P. Roncada
- Istituto Sperimentale Italiano L. Spallanzani
- Milano
- Italy
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| |
Collapse
|
7
|
Feng J, Guo Y, Gao Y, Zhu L. Effects of Hypoxia on the Physiology of Zebrafish (Danio rerio): Initial Responses, Acclimation and Recovery. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:43-48. [PMID: 26440964 DOI: 10.1007/s00128-015-1668-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Hypoxia often occurs in aquatic environments as dissolved oxygen (DO) concentration decrease to a level where it is detrimental to aquatic organisms. To investigate the effects of hypoxia on the physiology of zebrafishes (Danio rerio), the organisms were kept at normoxic conditions (DO: 8 ± 0.3 mg L(-1): control group) or were subjected to mild (DO: 3 ± 0.3 mg L(-1)) or severe hypoxia (DO: 1 ± 0.2 mg L(-1)) for 48 h and a subsequent restoration of oxygen concentrations (DO: 8 ± 0.3 mg L(-1)) for another 96 h at 25°C. We found that the enzyme activities show different initial responses, acclimation and recovery to severe hypoxia relative to normoxic conditions, but no significant difference was observed between normoxic conditions and mild hypoxia. The results suggest that zebrafishes can acclimate to the mild hypoxia (3 mg L(-1)) quickly but oxidative damage would occur when DO decreased below 1 mg L(-1). Our findings could be useful for water resource managers to set protection limits of DO for aquatic organisms.
Collapse
Affiliation(s)
- Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ying Guo
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yongfei Gao
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Chicano-Gálvez E, Asensio E, Cañavate JP, Alhama J, López-Barea J. Proteomic analysis through larval development ofSolea senegalensisflatfish. Proteomics 2015; 15:4105-19. [DOI: 10.1002/pmic.201500176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology; University of Córdoba (UCO); Córdoba Spain
| |
Collapse
|
9
|
Fernández-Cisnal R, Alhama J, Abril N, Pueyo C, López-Barea J. Redox proteomics as biomarker for assessing the biological effects of contaminants in crayfish from Doñana National Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:121-133. [PMID: 24846406 DOI: 10.1016/j.scitotenv.2014.04.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Despite its environmental relevance and sensitivity, Doñana National Park (DNP) is under high ecological pressure. In crayfish (Procambarus clarkii), the utility of redox proteomics as a novel biomarker was evaluated in the aquatic ecosystems of DNP and its surroundings, where agricultural activity is a serious concern. After fluorescence labeling of reversibly oxidized Cys and 2-DE separation, the total density of proteins with reversibly oxidized thiols was found to be much higher in animals from the Matochal (MAT) and Rocina (ROC) streams, while no difference was found in crayfish from Partido (PAR) stream compared to those from the DNP core at Lucio del Palacio (the negative control). The 2-DE analysis revealed 35 spots with significant differences in thiol oxidation, among which 19 proteins were identified via MALDI-TOF/TOF. While 3 spots, identified as ferritin, showed higher oxidation levels in ROC, other identified proteins were more intense at MAT than at ROC (superoxide dismutase, protein disulfide isomerase and actin) or were overoxidized only in MAT (nucleoside diphosphate kinase, fructose-biphosphate aldolase, fatty acid-binding protein, phosphopyruvate hydratase). For most of the identified proteins, spots corresponding to different Cys oxidized forms were detected, and the native forms, without oxidized thiol groups were also found in some of them. Evidence of reversible oxidation was found for specific Cys residues, including Cys13 in ferritin as well as Cys76 and Cys108 in nucleoside diphosphate kinase. The identified thiol-oxidized proteins provide information about the metabolic pathways and/or physiological processes affected by pollutant-elicited oxidative stress.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - José Alhama
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain.
| |
Collapse
|
10
|
Growth-Phase Dependent Variation in Photosynthetic Activity and Cellular Protein Expression Profile in the Harmful RaphidophyteChattonella antiqua. Biosci Biotechnol Biochem 2014; 77:46-52. [PMID: 23291769 DOI: 10.1271/bbb.120543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:55-60. [DOI: 10.1016/j.mrgentox.2013.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
|
12
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|
13
|
Douxfils J, Deprez M, Mandiki SNM, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P. Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication--clues to physiological acclimation and humoral immune modulations. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1112-1122. [PMID: 22982557 DOI: 10.1016/j.fsi.2012.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the physiological and humoral immune responses of Eurasian perch submitted to 4-h hypoxia in either single or repeated way. Two generations (F1 and F5) were tested to study the potential changes in these responses with domestication. In both generations, single and repeated hypoxia resulted in hyperglycemia and spleen somatic index reduction. Glucose elevation and lysozyme activity decreased following repeated hypoxia. Complement hemolytic activity was unchanged regardless of hypoxic stress or domestication level. A 2D-DIGE proteomic analysis showed that some C3 components were positively modulated by single hypoxia while C3 up- and down-regulations and over-expression of transferrin were observed following repeated hypoxia. Domestication was associated with a low divergence in stress and immune responses to hypoxia but was accompanied by various changes in the abundance of serum proteins related to innate/specific immunity and acute phase response. Thus, it appeared that the humoral immune system was modulated following single and repeated hypoxia (independently of generational level) or during domestication and that Eurasian perch may display physiological acclimation to frequent hypoxic disturbances.
Collapse
Affiliation(s)
- Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur (FUNDP), Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eyckmans M, Benoot D, Van Raemdonck GA, Zegels G, Van Ostade XW, Witters E, Blust R, De Boeck G. Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:220-32. [DOI: 10.1016/j.cbd.2012.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 01/30/2023]
|
15
|
Costa PM, Chicano-Gálvez E, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, Alhama-Carmona J, Lopez-Barea J, DelValls TA, Costa MH. Hepatic proteome changes in Solea senegalensis exposed to contaminated estuarine sediments: a laboratory and in situ survey. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1194-1207. [PMID: 22362511 DOI: 10.1007/s10646-012-0874-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments. Changes in liver cytosolic protein regulation patterns were determined by a combination of two-dimensional electrophoresis with de novo sequencing by tandem mass spectrometry. From the forty-one cytosolic proteins found to be deregulated, nineteen were able to be identified, taking part in multiple cellular processes such as anti-oxidative defence, energy production, proteolysis and contaminant catabolism (especially oxidoreductase enzymes). Besides a clear distinction between animals exposed to the reference and contaminated sediments, differences were also observed between laboratory- and in situ-tested fish. Soles exposed in the laboratory to the contaminated sediments failed to induce, or even markedly down-regulated, many proteins, with the exception of a peroxiredoxin (an anti-oxidant enzyme) and a few others, when compared to reference fish. In situ exposure to the contaminated sediments revealed significant up-regulation of basal metabolism-related enzymes, comparatively to the reference condition. Down-regulation of basal metabolism enzymes, related to energy production and gene transcription, in fish exposed in the laboratory to the contaminated sediments, may be linked to sediment-bound contaminants and likely compromised the organisms' ability to deploy adequate responses against insult.
Collapse
Affiliation(s)
- Pedro M Costa
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da, IMAR-Instituto do Mar, Universidade Nova de Lisboa, Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
17
|
Douxfils J, Mathieu C, Mandiki SNM, Milla S, Henrotte E, Wang N, Vandecan M, Dieu M, Dauchot N, Pigneur LM, Li X, Rougeot C, Mélard C, Silvestre F, Van Doninck K, Raes M, Kestemont P. Physiological and proteomic evidences that domestication process differentially modulates the immune status of juvenile Eurasian perch (Perca fluviatilis) under chronic confinement stress. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1113-1121. [PMID: 22008286 DOI: 10.1016/j.fsi.2011.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/13/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
The current study aimed to evaluate the influence of domestication process on the stress response and subsequent immune modulation in Eurasian perch juveniles (Perca fluviatilis) submitted to chronic confinement. Briefly, F1 and F4 generations were confined into small-size tanks and sampled 7 and 55 days after stocking. Cortisol and glucose levels as well as lysozyme activity and immunoglobulin level were evaluated in the serum. Spleen Somatic Index and spleen ROS production were also measured. A proteomic analysis was performed on serum sampled on day 7. Finally, both generations were genetically characterized using a microsatellite approach. Globally, results revealed that chronic confinement did not elicit a typical stress response but resulted in a prolonged immune stimulation. Proteomic results suggested that domestication process influenced the immune status of perch submitted to chronic confinement as the F1 confined fish displayed lower abundance of C3 complement component, transferrin and Apolipoprotein E. Microsatellite data showed a strong genetic drift as well as reduced genetic diversity, allelic number and heterozygosity along with domestication process. The present work is the first to report that fish under domestication can develop an immune response, assessed by a combined approach, following recurrent challenges imposed by captive environment despite a reduced genetic variation.
Collapse
Affiliation(s)
- J Douxfils
- University of Namur (FUNDP), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Costa PM, Miguel C, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH. Transcriptomic analyses in a benthic fish exposed to contaminated estuarine sediments through laboratory and in situ bioassays. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1749-1764. [PMID: 21660599 DOI: 10.1007/s10646-011-0708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2011] [Indexed: 05/30/2023]
Abstract
The transcription of contaminant response-related genes was investigated in juvenile Senegalese soles exposed to sediments from three distinct sites (a reference plus two contaminated) of a Portuguese estuary (the Sado, W Portugal) through simultaneous 28-day laboratory and in situ bioassays. Transcription of cytochrome P450 1A (CYP1A), metallothionein 1 (MT1), glutathione peroxidase (GPx), catalase (CAT), caspase 3 (CASP3) and 90 kDa heat-shock protein alpha (HSP90AA) was surveyed in the liver by real-time PCR. CASP3 transcription analysis was complemented by surveying apoptosis through the TUNEL reaction. After 14 days of exposure, relative transcription was either reduced or decreased in fish exposed to the contaminated sediments, revealing a disturbance stress phase during which animals failed to respond to insult. After 28 days of exposure all genes' transcription responded to contamination but laboratory and in situ assays depicted distinct patterns of regulation. Although sediments revealed a combination of organic and inorganic toxicants, transcription of the CYP1A gene was consistently correlated to organic contaminants. Metallothionein regulation was found correlated to metallic and organic xenobiotic contamination in the laboratory and in situ, respectively. The transcription of oxidative stress-related genes can be a good indicator of general stress but caution is mandatory when interpreting the results since regulation may be influenced by multiple factors. As for MT1, HSP90 up-regulation has potential to be a good indicator for total contamination, as well as the CASP3 gene, even though hepatocyte apoptosis depicted values inconsistent with sediment contamination, showing that programmed cell death did not directly depend on caspase transcription alone.
Collapse
Affiliation(s)
- Pedro M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lushchak VI. Environmentally induced oxidative stress in aquatic animals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:13-30. [PMID: 21074869 DOI: 10.1016/j.aquatox.2010.10.006] [Citation(s) in RCA: 1477] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are an unenviable part of aerobic life. Their steady-state concentration is a balance between production and elimination providing certain steady-state ROS level. The dynamic equilibrium can be disturbed leading to enhanced ROS level and damage to cellular constituents which is called "oxidative stress". This review describes the general processes responsible for ROS generation in aquatic animals and critically analyses used markers for identification of oxidative stress. Changes in temperature, oxygen levels and salinity can cause the stress in natural and artificial conditions via induction of disbalance between ROS production and elimination. Human borne pollutants can also enhance ROS level in hydrobionts. The role of transition metal ions, such as copper, chromium, mercury and arsenic, and pesticides, namely insecticides, herbicides, and fungicides along with oil products in induction of oxidative stress is highlighted. Last years the research in biology of free radicals was refocused from only descriptive works to molecular mechanisms with particular interest to ones enhancing tolerance. The function of some transcription regulators (Keap1-Nrf2 and HIF-1α) in coordination of organisms' response to oxidative stress is discussed. The future directions in the field are related with more accurate description of oxidative stress, the identification of its general characteristics and mechanisms responsible for adaptation to the stress have been also discussed. The last part marks some perspectives in the study of oxidative stress in hydrobionts, which, in addition to classic use, became more and more popular to address general biological questions such as development, aging and pathologies.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
20
|
Varó I, Rigos G, Navarro JC, del Ramo J, Calduch-Giner J, Hernández A, Pertusa J, Torreblanca A. Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: a proteomic approach. CHEMOSPHERE 2010; 80:570-577. [PMID: 20451238 DOI: 10.1016/j.chemosphere.2010.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
Gilthead sea bream Sparus aurata is the most commercialized Mediterranean aquacultured fish species. Ivermectin has recently (experimentally) started to be used to control ectoparasitic infestations in Mediterranean cultured marine fish. The potential hepatotoxicity of ivermectin was investigated in gilthead sea bream juveniles (35g) following oral administration at the recommended dose of 0.2 mgkg(-1) fish for 10d. Difference Gel Electrophoresis Technology (DIGE) was used to study the effect of this treatment in gilthead sea bream liver protein profile under routine culture conditions. The 2D-DIGE protein maps obtained were analyzed using the DeCyder 6.5 software. The results obtained showed significant changes in the expression of 36 proteins respect to the control group. Among these proteins, six increased in abundance, and 30 decreased. Spot showing differential expression respect to the control were analyzed by mass spectrometry and database search, which resulted in three positive identifications corresponding to hepatic proteins involved in lipid metabolism (apoA-I), oxidative stress responses and energy generation (beta-globin, ATP synthase subunit beta). These proteins have not been previously associated to invermectin effect.
Collapse
Affiliation(s)
- I Varó
- Department of Functional Biology, University of Valencia. Dr. Moliner, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J. Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 2010; 10:963-75. [DOI: 10.1002/pmic.200900528] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|