1
|
Miao M, Li S, Yu Y, Li F. LysM-containing proteins function in the resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104900. [PMID: 37536402 DOI: 10.1016/j.dci.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Lysin motif (LysM) is a functional domain that can bind to peptidoglycans, chitin and their derivatives. The LysM-containing proteins participate in multiple biological processes, such as the hydrolysis of bacterial cell walls and the perception of PAMPs in plants and high animals. In the present study, two genes encoding LysM-containing proteins, designated as LvLysM1 and LvLysM2, were identified in the Pacific white shrimp, Litopenaeus vannamei, and their functions during Vibrio infection were analyzed. The open-reading frame (ORF) of LvLysM1 was 795 bp, only encoding a LysM domain at the N-terminal region. The ORF of LvLysM2 was 834 bp, encoding a LysM domain at the central region and a transmembrane region at the C-terminal region. Both LvLysM1 and LvLysM2 were widely transcribed in all tested shrimp tissues. Enzyme-linked immunosorbent assay (ELISA) showed that the recombinant protein of LvLysM2 could bind to different bacterial polysaccharides, while LvLysM1 showed no direct binding activity. The transcripts of LvLysMs in gills increased significantly after infection with Vibrio parahaemolyticus. When LvLysM1 or LvLysM2 was knocked down by dsRNA, the mortality of shrimp was significantly increased after infection with Vibrio parahaemolyticus. Interestingly, some SNPs existed in these two genes were apparently correlated with the VpAHPND resistance of shrimp. These results suggested that LvLysM1 and LvLysM2 might contribute to the disease resistance of shrimp. The data provide new knowledge about the function of LysM-containing proteins in shrimp and potential genetic markers for disease resistance breeding.
Collapse
Affiliation(s)
- Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wong LL, Chun LC, Deris ZM, Zainudin AA, Ikhwanuddin M, Iehata S, Rahman MM, Asaduzzaman M. Genetic diversity and population structure of wild and domesticated black tiger shrimp (Penaeus monodon) broodstocks in the Indo-Pacific regions using consolidated mtDNA and microsatellite markers. GENE REPORTS 2021; 23:101047. [DOI: 10.1016/j.genrep.2021.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Yuan J, Zhang X, Li F, Xiang J. Genome Sequencing and Assembly Strategies and a Comparative Analysis of the Genomic Characteristics in Penaeid Shrimp Species. Front Genet 2021; 12:658619. [PMID: 34012463 PMCID: PMC8126689 DOI: 10.3389/fgene.2021.658619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
Penaeid shrimp (family Penaeidae) represents one of the most economically and ecologically important groups of crustaceans. However, their genome sequencing and assembly have encountered extreme difficulties during the last 20 years. In this study, based on our previous genomic data, we investigated the genomic characteristics of four penaeid shrimp species and identified potential factors that result in their poor genome assembly, including heterozygosity, polyploidization, and repeats. Genome sequencing and comparison of somatic cells (diploid) of the four shrimp species and a single sperm cell (haploid) of Litopenaeus vannamei identified a common bimodal distribution of K-mer depths, suggesting either high heterozygosity or abundant homo-duplicated sequences present in their genomes. However, penaeids have not undergone whole-genome duplication as indicated by a series of approaches. Besides, the remarkable expansion of simple sequence repeats was another outstanding character of penaeid genomes, which also made the genome assembly highly fragmented. Due to this situation, we tried to assemble the genome of penaeid shrimp using various genome sequencing and assembly strategies and compared the quality. Therefore, this study provides new insights about the genomic characteristics of penaeid shrimps while improving their genome assemblies.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Ma KY, Yu SH, Du YX, Feng SQ, Qiu LJ, Ke DY, Luo MZ, Qiu GF. Construction of a Genomic Bacterial Artificial Chromosome (BAC) Library for the Prawn Macrobrachium rosenbergii and Initial Analysis of ZW Chromosome-Derived BAC Inserts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:206-216. [PMID: 30632018 DOI: 10.1007/s10126-018-09873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Knowledge on sex determination has proven valuable for commercial production of the prawn Macrobrachium rosenbergii due to sex dimorphism of the male and female individuals. Previous studies indicated that prawn sex is determined by a ZW-ZZ chromosomal system, but no genomic information is available for the sex chromosome. Herein, we constructed a genomic bacterial artificial chromosome (BAC) library and identified the ZW-derived BAC clones for initial analysis of the sex chromosomal DNA sequence. The arrayed BAC library contains 200,448 clones with average insert size of 115.4 kb, corresponding to ∼ 4× coverage of the estimated 5.38 Gb genome. Based on a short female-specific marker, a Z- and a W-fragment were retrieved with the genomic walking method. Screening the BAC library using a ZW-specific marker as probe resulted in 12 positive clones. From these, a Z-derived (P331M17) and a W-derived (P122G2) BAC clones were randomly selected and sequenced by PacBio method. We report the construction of a large insert, deep-coverage, and high-quality BAC library for M. rosenbergii that provides a useful resource for positional cloning of target genes, genomic organization, and comparative genomics analysis. Our study not only confirmed the ZW/ZZ system but also discovered sex-linked genes on ZW chromosomes for the first time, contributing to a comprehensive understanding of the genomic structure of sex chromosomes in M. rosenbergii.
Collapse
Affiliation(s)
- Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shu-Hui Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Yu-Xin Du
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shi-Qing Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Liang-Jie Qiu
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Dai-Yi Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Mei-Zhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Zhang X, Li G, Jiang H, Li L, Ma J, Li H, Chen J. Full-length transcriptome analysis of Litopenaeus vannamei reveals transcript variants involved in the innate immune system. FISH & SHELLFISH IMMUNOLOGY 2019; 87:346-359. [PMID: 30677515 DOI: 10.1016/j.fsi.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Guanyu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Jinge Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
6
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
7
|
Zhuang X, Murphy KR, Ghigliotti L, Pisano E, Cheng CHC. Reconstruction of the repetitive antifreeze glycoprotein genomic loci in the cold-water gadids Boreogadus saida and Microgadus tomcod. Mar Genomics 2018; 39:73-84. [PMID: 29510906 DOI: 10.1016/j.margen.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Antifreeze glycoproteins (AFGPs) are a novel evolutionary innovation in members of the northern cod fish family (Gadidae), crucial in preventing death from inoculative freezing by environmental ice in their frigid Arctic and sub-Arctic habitats. However, the genomic origin and molecular mechanism of evolution of this novel life-saving adaptive genetic trait remained to be definitively determined. To this end, we constructed large insert genomic DNA BAC (bacterial artificial chromosome) libraries for two AFGP-bearing gadids, the high-Arctic polar cod Boreogadus saida and the cold-temperate Atlantic tomcod Microgadus tomcod, to isolate and sequence their AFGP genomic regions for fine resolution evolutionary analyses. The BAC library construction encountered poor cloning efficiency initially, which we resolved by pretreating the agarose-embedded erythrocyte DNA with a cationic detergent, a method that may be of general use to BAC cloning for teleost species and/or where erythrocytes are the source of input DNA. The polar cod BAC library encompassed 92,160 clones with an average insert size of 94.7 kbp, and the Atlantic tomcod library contained 73,728 clones with an average insert size of 89.6 kbp. The genome sizes of B. saida and M. tomcod were estimated by cell flow cytometry to be 836 Mbp and 645 Mbp respectively, thus their BAC libraries have approximately 10- and 9.7-fold genome coverage respectively. The inclusiveness and depth of coverage were empirically confirmed by screening the libraries with three housekeeping genes. The BAC clones that mapped to the AFGP genomic loci of the two gadids were then isolated by screening the BAC libraries with gadid AFGP gene probes. Eight minimal tiling path (MTP) clones were identified for B. saida, sequenced, and assembled. The B. saida AFGP locus reconstruction produced both haplotypes, and the locus comprises three distinct AFGP gene clusters, containing a total of 16 AFGP genes and spanning a combined distance of 512 kbp. The M. tomcod AFGP locus is much smaller at approximately 80 kbp, and contains only three AFGP genes. Fluorescent in situ hybridization with an AFGP gene probe showed the AFGP locus in both species occupies a single chromosomal location. The large AFGP locus with its high gene dosage in B. saida is consistent with its chronically freezing high Arctic habitats, while the small gene family in M. tomcod correlates with its milder habitats in lower latitudes. The results from this study provided the data for fine resolution sequence analyses that would yield insight into the molecular mechanisms and history of gadid AFGP gene evolution driven by northern hemisphere glaciation.
Collapse
Affiliation(s)
- Xuan Zhuang
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA; Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | - Katherine R Murphy
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA
| | - Laura Ghigliotti
- Institute of Marine Sciences (ISMAR), National Research Council (CNR), Genoa 16149, Italy
| | - Eva Pisano
- Institute of Marine Sciences (ISMAR), National Research Council (CNR), Genoa 16149, Italy
| | - C-H Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
9
|
Jiang L, You W, Zhang X, Xu J, Jiang Y, Wang K, Zhao Z, Chen B, Zhao Y, Mahboob S, Al-Ghanim KA, Ke C, Xu P. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:49-56. [PMID: 26438131 DOI: 10.1007/s10126-015-9666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/10/2015] [Indexed: 05/28/2023]
Abstract
The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.
Collapse
Affiliation(s)
- Likun Jiang
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- College of Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361005, China
| | - Xiaojun Zhang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
| | - Jian Xu
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yanliang Jiang
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Kai Wang
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Zixia Zhao
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Baohua Chen
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
- College of Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunfeng Zhao
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361005, China.
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics & Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
10
|
Yu Y, Zhang X, Yuan J, Li F, Chen X, Zhao Y, Huang L, Zheng H, Xiang J. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci Rep 2015; 5:15612. [PMID: 26503227 PMCID: PMC4621519 DOI: 10.1038/srep15612] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/28/2015] [Indexed: 11/09/2022] Open
Abstract
The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Long Huang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
11
|
Xiang J. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China. ACTA ACUST UNITED AC 2015; 4:296-310. [PMID: 28553577 PMCID: PMC5436491 DOI: 10.2174/2211550105666151105190012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/22/2022]
Abstract
Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology.
Collapse
Affiliation(s)
- Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
12
|
Jiang H, Li F, Zhang J, Zhang J, Huang B, Yu Y, Xiang J. Comparison of protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis challenged with heat-inactivated Vibrio anguillarum and white spot syndrome virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:111-123. [PMID: 24057166 DOI: 10.1007/s10126-013-9538-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Fenneropenaeus chinensis (Chinese shrimp) culture industry, like other Penaeidae culture, has been seriously affected by the shrimp diseases caused by bacteria and virus. To better understand the mechanism of immune response of shrimp to different pathogens, proteome research approach was utilized in this study. Firstly, the soluble hepatopancreas protein samples in adult Chinese shrimp among control, heat-inactivated Vibrio-challenged and white spot syndrome virus-infected groups were separated by 2-DE (pH range, 4-7; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and pH range, 3-10; tricine-SDS-PAGE). Then the differentially expressed protein spots (≥1.5-fold or ≤0.67-fold averagely of controls) were analyzed by LC-ESI-MS/MS. Using Mascot online database searching algorithm and SEQUEST searching program, 48 and 49 differentially expressed protein spots were successfully identified in response to Vibrio and white spot syndrome virus infection, respectively. Based on these results, we discussed the mechanism of immune response of the shrimp and shed light on the differences between immune response of shrimp toward Vibrio and white spot syndrome virus. This study also set a basis for further analyses of some key genes in immune response of Chinese shrimp.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Sookruksawong S, Sun F, Liu Z, Tassanakajon A. RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:523-533. [PMID: 23921257 DOI: 10.1016/j.dci.2013.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Outbreak of Taura syndrome virus (TSV) is one of the major pathogens of the Pacific white shrimp Litopenaeus vannamei. Although selective breeding for improvement of TSV resistance in L. vannamei has been successfully developed and has led to a great benefit to the shrimp farming industry worldwide. The molecular mechanisms underlying the viral resistance in shrimp remain largely unknown. In the present study, we conducted the first transcriptomic profiling of host responses in hemolymph and hemocytes in order to identify the differentially expressed genes associated with resistance to TSV in L. vannamei. High-throughput RNA-Seq was employed, obtaining 193.6 and 171.2 million high-quality Illumina reads from TSV-resistant and susceptible L. vannamei lines respectively. A total of 61,937 contigs were generated with an average length of 546.26 bp. BLASTX-based gene annotation (E-value < 10(-5)) allowed the identification of 12,398 unique proteins against the NCBI non-redundant NR database. In addition, comparison of digital gene expression between resistant and susceptible strains revealed 1374 significantly differentially expressed contigs (representing 697 unigenes). Gene pathway analysis of the differentially expressed gene set highlighted several putative genes involved in the immune response activity including (1) pathogen/antigen recognition including immune regulator, adhesive protein and signal transducer; (2) coagulation; (3) proPO pathway cascade; (4) antioxidation; and (5) protease. The expression patterns of 22 differentially expressed genes involving immune response were validated by quantitative real-time RT-PCR (average correlation coefficients 0.94, p-value < 0.001). Our results provide valuable information on gene functions associated with resistance to TSV in L. vannamei.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
14
|
Andriantahina F, Liu X, Feng T, Xiang J. Current status of genetics and genomics of reared penaeid shrimp: information relevant to access and benefit sharing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:399-412. [PMID: 23529408 DOI: 10.1007/s10126-013-9500-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/16/2013] [Indexed: 06/02/2023]
Abstract
At present, research and progress in shrimp genomics and genetics show significant developments. Shrimp genetics and genomics also show immense potential for an increased production in a way that meets shrimp culture progress goals for the third millennium. This review article aims to provide an overview of its current status and future direction, discusses questions that need focused research to address them, and summarizes areas where genetics and genomics knowledge can make a positive difference to shrimp culture sustainability. Sustainable progress of penaeid shrimps will depend upon feasible solutions for environmental, research, economic, consumer problems, proper development, and planning policy enforcement. It is recommended that increased funding for biotechnology research and progress be directed to expand worldwide commercial shrimp culture and address environmental and public health issues. For any researcher or shrimp company member who has attempted to or whom would like to thoroughly search the literature to gain a complete understanding of the current state of shrimp genetics and genomics, this publication will be an invaluable source of reference materials, some of which is reported here for the first time.
Collapse
Affiliation(s)
- Farafidy Andriantahina
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | | | | | | |
Collapse
|
15
|
Zhao C, Zhang X, Li F, Huan P, Xiang J. Functional analysis of the promoter of the heat shock cognate 70 gene of the Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 34:397-401. [PMID: 23032439 DOI: 10.1016/j.fsi.2012.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Current knowledge on cis-regulatory elements of immune genes of the Pacific white shrimp (Litopenaeus vannamei) is poor. In this study, we identified the promoter of the heat shock cognate protein 70 (HSC70) gene of L. vannamei (lvhsc70). The promoter activity of lvhsc70 promoter was analyzed in insect sf9 cell lines. First, the putative promoter sequence was proved to be able to drive the expression of reporter EGFP gene successfully. Then serial deletion experiments were conducted to investigate functional transcription elements in the promoter region. The results revealed that both positive and negative transcription elements existed in this region. These results are quite different from the previous report on the promoter of HSC70 gene in Penaeus monodon (pmhsc70), where only positive transcription elements were indicated. The sequences that are not conserved between the promoters of lvhsc70 and pmhsc70 might contribute to the differences. Finally, we tested the effect of a putative "NF-κb binding site" in the promoter and, surprisingly, found that deletion of this site would result in a significantly enhancement of the expression of reporter genes, while the underlying mechanisms remain unrevealed. Our results would provide supports for future studies to identify the functional transcription elements in the lvhsc70 promoter and to expand our knowledge on regulation of innate immune genes in penaeid shrimp.
Collapse
Affiliation(s)
- Cui Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | |
Collapse
|
16
|
Li C, Weng S, Chen Y, Yu X, Lü L, Zhang H, He J, Xu X. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. PLoS One 2012; 7:e47442. [PMID: 23071809 PMCID: PMC3469548 DOI: 10.1371/journal.pone.0047442] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yonggui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqiang Yu
- Division of Cell Biology and Biophysics, School of Biological Science, University of Missouri-Kansas City, Kansas City, United States of America
| | - Ling Lü
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Haiqing Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (XX); (JH)
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (XX); (JH)
| |
Collapse
|
17
|
Molecular basis and genetic improvement of economically important traits in aquaculture animals. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5213-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Zhang M, Zhang Y, Huang JJ, Zhang X, Lee MK, Stelly DM, Zhang HB. Genome physical mapping of polyploids: a BIBAC physical map of cultivated tetraploid cotton, Gossypium hirsutum L. PLoS One 2012; 7:e33644. [PMID: 22438974 PMCID: PMC3306275 DOI: 10.1371/journal.pone.0033644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 12/01/2022] Open
Abstract
Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yang Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - James J. Huang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Xiaojun Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mi-Kyung Lee
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research. Nat Protoc 2012; 7:479-99. [PMID: 22343430 DOI: 10.1038/nprot.2011.456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-insert BAC (bacterial artificial chromosome) and BIBAC (binary BAC) libraries are essential for modern genomics research for all organisms. We helped pioneer the BAC and BIBAC technologies, and by using them we have constructed hundreds of BAC and BIBAC libraries for different species of plants, animals, marine animals, insects, algae and microbes. These libraries have been used globally for different aspects of genomics research. Here we describe the procedure with the latest improvements that we have made and used for construction of BIBAC libraries. The procedure includes the preparation of BIBAC vectors, the preparation of clonable fragments of the desired size from the source DNA, the construction and transformation of BIBACs and, finally, the characterization and assembly of BIBAC libraries. We also specify the modifications necessary for construction of BAC libraries using the protocol. The entire protocol takes ∼7 d.
Collapse
|
20
|
Zhang M, Zhang Y, Scheuring CF, Wu CC, Dong JJ, Zhang HB. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc 2012; 7:467-78. [PMID: 22343429 DOI: 10.1038/nprot.2011.455] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Megabase-sized DNA is crucial to modern genomics research of all organisms. Among the preparation methods developed, the nuclei method is the simplest and most widely used for preparing high-quality megabase-sized DNA from divergent organisms. In this method, nuclei are first isolated by physically grinding the source tissues. The nontarget cytoplast organellar genomes and metabolites are removed by centrifugation and washing, thus maximizing the utility of the method and substantially improving the digestibility and clonability of the resultant DNA. The nuclei are then embedded in an agarose matrix containing numerous pores, allowing the access of restriction enzymes while preventing the DNA from physical shearing. DNA is extracted from the nuclei, purified and subsequently manipulated in the agarose matrix. Here we describe the nuclei method that we have successfully used to prepare high-quality megabase-sized DNA from hundreds of plant, animal, fish, insect, algal and microbial species. The entire protocol takes ∼3 d.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Li Y, Xu P, Zhao Z, Wang J, Zhang Y, Sun XW. Construction and characterization of the BAC library for common carp Cyprinus carpio L. and establishment of microsynteny with zebrafish Danio rerio. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:706-712. [PMID: 21088980 DOI: 10.1007/s10126-010-9332-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
A bacterial artificial chromosome (BAC) library of common carp Cyprinus carpio L. was constructed as a part of ongoing common carp genome project, which is aiming assembly of common carp genome. The library, containing a total of 92,160 BAC clones with an average insert size of 141 kb, was constructed into the restriction site of Hind III on BAC vector CopyControl pCC1BAC, covering 7.7 X haploid genome equivalents. Three dimension pools and superpools of the BAC library were established and 23 positive clones of 14 targets were identified from one-fifth of the BAC library. Pilot project of BAC end sequencing was conducted on 2,688 BAC ends from 1,344 clones and harvested 2,522 high-quality Q20 sequences with average length of 677 bp. The sequencing success rate was 93.8% and pair-end success rate was 92.3%. A total of 212 microsyntenies had been established between common carp and zebrafish genomes as a trial for genome-wide comparative genomics in these two closely related species.
Collapse
Affiliation(s)
- Yan Li
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | | | | | | | | | | |
Collapse
|
22
|
Zhi B, Tang W, Zhang X. Enhancement of shrimp antiviral immune response through caspase-dependent apoptosis by small molecules. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:575-583. [PMID: 20936319 DOI: 10.1007/s10126-010-9328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Epidemic diseases cost large amount of economic loss in the shrimp aquaculture. To control the epidemic diseases, it is a very efficient approach to enhance the shrimp immunity by immunostimulants. In aquaculture, however, the applications of the available immunostimulants are very limited due to the lack of information about the roles of these immunostimulants in animal immunity. In the present study, a caspase protein (PjCaspase), required in shrimp antiviral apoptosis, was used as the target protein to screen for small molecules which would enhance the shrimp immunity. Based on screening using the EGFP-PjCaspase fusion protein in insect cells, four small molecules could enhance the activity of PjCaspase protein. Among them, IL-2 and evodiamine were further evidenced to enhance the apoptotic activity of shrimp hemocytes in vivo, suggesting that the small molecules improved the activity of apoptosis through the activation of the PjCaspase protein. The results indicated that the enhancement of apoptotic activity effectively inhibited the white spot syndrome virus (WSSV) infection in shrimp, which further led to the decrease of mortalities of WSSV-infected shrimp. Therefore, our study, for the first time, presented that the strategy using the key proteins in immune responses of aquatic organisms as the target proteins was a very efficient approach for the screening of immunostimulants to prevent the aquatic organisms from pathogen infections.
Collapse
Affiliation(s)
- Bin Zhi
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | | | | |
Collapse
|
23
|
Jang S, Liu H, Su J, Dong F, Xiong F, Liao L, Wang Y, Zhu Z. Construction and characterization of two bacterial artificial chromosome libraries of grass carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:261-266. [PMID: 20339891 DOI: 10.1007/s10126-010-9268-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/17/2009] [Indexed: 05/29/2023]
Abstract
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4 x haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3 x haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.
Collapse
Affiliation(s)
- Songhun Jang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Koyama T, Asakawa S, Katagiri T, Shimizu A, Fagutao FF, Mavichak R, Santos MD, Fuji K, Sakamoto T, Kitakado T, Kondo H, Shimizu N, Aoki T, Hirono I. Hyper-expansion of large DNA segments in the genome of kuruma shrimp, Marsupenaeus japonicus. BMC Genomics 2010; 11:141. [PMID: 20187930 PMCID: PMC2838849 DOI: 10.1186/1471-2164-11-141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/26/2010] [Indexed: 11/30/2022] Open
Abstract
Background Higher crustaceans (class Malacostraca) represent the most species-rich and morphologically diverse group of non-insect arthropods and many of its members are commercially important. Although the crustacean DNA sequence information is growing exponentially, little is known about the genome organization of Malacostraca. Here, we constructed a bacterial artificial chromosome (BAC) library and performed BAC-end sequencing to provide genomic information for kuruma shrimp (Marsupenaeus japonicus), one of the most widely cultured species among crustaceans, and found the presence of a redundant sequence in the BAC library. We examined the BAC clone that includes the redundant sequence to further analyze its length, copy number and location in the kuruma shrimp genome. Results Mj024A04 BAC clone, which includes one redundant sequence, contained 27 putative genes and seemed to display a normal genomic DNA structure. Notably, of the putative genes, 3 genes encode homologous proteins to the inhibitor of apoptosis protein and 7 genes encode homologous proteins to white spot syndrome virus, a virulent pathogen known to affect crustaceans. Colony hybridization and PCR analysis of 381 BAC clones showed that almost half of the BAC clones maintain DNA segments whose sequences are homologous to the representative BAC clone Mj024A04. The Mj024A04 partial sequence was detected multiple times in the kuruma shrimp nuclear genome with a calculated copy number of at least 100. Microsatellites based BAC genotyping clearly showed that Mj024A04 homologous sequences were cloned from at least 48 different chromosomal loci. The absence of micro-syntenic relationships with the available genomic sequences of Daphnia and Drosophila suggests the uniqueness of these fragments in kuruma shrimp from current arthropod genome sequences. Conclusions Our results demonstrate that hyper-expansion of large DNA segments took place in the kuruma shrimp genome. Although we analyzed only a part of the duplicated DNA segments, our result suggested that it is difficult to analyze the shrimp genome following normal analytical methodology. Hence, it is necessary to avoid repetitive sequence (such as segmental duplications) when studying the other unique structures in the shrimp genome.
Collapse
Affiliation(s)
- Takashi Koyama
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|