1
|
Gargano C, Mauro M, Martino C, Queiroz V, Vizzini A, Luparello C, Badalamenti R, Bellistrì F, Cuttitta A, Kondo H, Longo F, Arizza V, Vazzana M. Shark immune system: A review about their immunoglobulin repertoire. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110187. [PMID: 39947340 DOI: 10.1016/j.fsi.2025.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
In the past few decades, the literature about the immune system of vertebrates has increased thanks to the research about new therapies and new biomolecules able to treat or eradicate many human autoimmune diseases. Researchers found that immunoglobulins (Igs) are the most versatile biomolecules able to recognize almost every existing epitope with their binding domains. Phylogenetically, the most recent vertebrates exhibit the greatest sequence diversification in their Igs to extend their ability to distinguish different antigens. Among cartilaginous fishes, the most ancient vertebrates on phylogenetic history, sharks possess four types of Igs with similar pathways to extend sequence diversity and binding domains variability. Their Ig new antigen receptor (IgNAR) represents one of the most versatile and small Ig type upon all other species. The shark species are fundamental sources of new therapeutic receptors lending a further step to treatments against several human diseases. The aim of this review is to analyze sharks Igs, focusing on IgNARs for each species.
Collapse
Affiliation(s)
- C Gargano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - M Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| | - C Martino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - V Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sala 300, Rua do Matão, Travessa 14, n° 101, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - A Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - C Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Bellistrì
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - A Cuttitta
- National Research Council (CNR-ISMed), Institute for Studies on the Mediterranean, Via Filippo Parlatore, 65, 90145, Palermo, Italy
| | - H Kondo
- Laboratory of Genome Science, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - F Longo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - V Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Nakada-Masuta T, Takeda H, Uchida K. Novel Approach for Obtaining Variable Domain of New Antigen Receptor with Different Physicochemical Properties from Japanese Topeshark ( Hemitriakis japanica). Mar Drugs 2023; 21:550. [PMID: 37999374 PMCID: PMC10672104 DOI: 10.3390/md21110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse candidate antibodies are needed to successfully identify therapeutic and diagnostic applications. The variable domain of IgNAR (VNAR), a shark single-domain antibody, has attracted attention owing to its favorable physicochemical properties. The phage display method used to screen for optimal VNARs loses sequence diversity because of the bias caused by the differential ease of protein expression in Escherichia coli. Here, we investigated a VNAR selection method that combined panning with various selection pressures and next-generation sequencing (NGS) analyses to obtain additional candidates. Drawing inspiration from the physiological conditions of sharks and the physicochemical properties of VNARs, we examined the effects of NaCl and urea concentrations, low temperature, and preheating at the binding step of panning. VNAR phage libraries generated from Japanese topeshark (Hemitriakis japanica) were enriched under these conditions. We then performed NGS analysis and attempted to select clones that were specifically enriched under each panning condition. The identified VNARs exhibited higher reactivity than those obtained by panning without selection pressure. Additionally, they possess physicochemical properties that reflect their respective selection pressures. These results can greatly enhance our understanding of VNAR properties and offer guidance for the screening of high-quality VNAR clones that are present at low frequencies.
Collapse
Affiliation(s)
- Tomofumi Nakada-Masuta
- Graduate School of Science, Technology and Innovation, Kobe University, 7-1-49 Minatojimaminamimachi Chuo-ku, Kobe 650-0047, Japan;
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, 4-3-2 Nishi-ku Takatsukadai, Kobe 651-2271, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama 790-8577, Japan;
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, 7-1-49 Minatojimaminamimachi Chuo-ku, Kobe 650-0047, Japan;
| |
Collapse
|
3
|
Jiang X, Sun L, Hu C, Zheng F, Lyu Z, Shao J. Shark IgNAR: The Next Broad Application Antibody in Clinical Diagnoses and Tumor Therapies? Mar Drugs 2023; 21:496. [PMID: 37755109 PMCID: PMC10532743 DOI: 10.3390/md21090496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Antibodies represent a relatively mature detection means and serve as therapeutic drug carriers in the clinical diagnosis and treatment of cancer-among which monoclonal antibodies (mAbs) currently occupy a dominant position. However, the emergence and development of small-molecule monodomain antibodies are inevitable due to the many limitations of mAbs, such as their large size, complex structure, and sensitivity to extreme temperature, and tumor microenvironments. Thus, since first discovered in Chondroid fish in 1995, IgNAR has become an alternative therapeutic strategy through which to replace monoclonal antibodies, thus entailing that this novel type of immunoglobulin has received wide attention with respect to clinical diagnoses and tumor therapies. The variable new antigen receptor (VNAR) of IgNAR provides an advantage for the development of new antitumor drugs due to its small size, high stability, high affinity, as well as other structural and functional characteristics. In that respect, a better understanding of the unique characteristics and therapeutic potential of IgNAR/VNAR in clinical and anti-tumor treatment is needed. This article reviews the advantages of its unique biochemical conditions and molecular structure for clinical diagnoses and novel anti-tumor drugs. At the same time, the main advantages of the existing conjugated drugs, which are based on single-domain antibodies, are introduced here, thereby providing new ideas and methods for the development of clinical diagnoses and anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Ling Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengwu Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feijian Zheng
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Zhengbing Lyu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Takeda H, Ozawa T, Zenke H, Ohnuki Y, Umeda Y, Zhou W, Tomoda H, Takechi A, Narita K, Shimizu T, Miyakawa T, Ito Y, Sawasaki T. VNAR development through antigen immunization of Japanese topeshark ( Hemitriakis japanica). Front Bioeng Biotechnol 2023; 11:1265582. [PMID: 37771574 PMCID: PMC10522858 DOI: 10.3389/fbioe.2023.1265582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR. This shark is an underutilized fishery resource readily available in East Asia coastal waters and can be safely handled without sharp teeth or venomous stingers. The administration of Venus fluorescent protein to Japanese topesharks markedly increased antigen-specific IgM and IgNAR antibodies in the blood. Both the phage-display library and the yeast-display library were constructed using RNA from immunized shark splenocytes. Each library was enriched by biopanning, and multiple antigen-specific VNARs were acquired. The obtained antibodies had affinities of 1 × 10-8 M order and showed high plasticity, retaining their binding activity even after high-temperature or reducing-agent treatment. The dissociation rate of a low-affinity VNAR was significantly improved via dimerization. These results demonstrate the potential utility of the Japanese topeshark for the development of VNAR. Furthermore, we conducted deep sequencing analysis to reveal the quantitative changes in the CDR3-coding sequences, revealing distinct enrichment bias between libraries. VNARs that were primarily enriched in the phage display had CDR3 coding sequences with fewer E. coli rare codons, suggesting translation machinery on the selection and enrichment process during biopanning.
Collapse
Affiliation(s)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
| | - Hiroki Zenke
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoh Ohnuki
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuri Umeda
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wei Zhou
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Honoka Tomoda
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Akihiko Takechi
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Kimiyoshi Narita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takaaki Shimizu
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
5
|
Kim WS, Chae HD, Jung I, Lee WK, Lee WJ, Lee J, Gong Y, Lee D, Kim BW, Kim JK, Hwang J, Kweon DH, Jung ST, Na JH. Isolation and characterization of single domain antibodies from banded houndshark (Triakis scyllium) targeting SARS-CoV-2 spike RBD protein. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108807. [PMID: 37169112 PMCID: PMC10167778 DOI: 10.1016/j.fsi.2023.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified new variable antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.
Collapse
Affiliation(s)
- Woo Sung Kim
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Hee Do Chae
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Inji Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Woo Jun Lee
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jisun Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yejin Gong
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dohyun Lee
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Byeong-Won Kim
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Jin-Koo Kim
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Jung-Hyun Na
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
6
|
Jia L, Wang Y, Shen Y, Zhong B, Luo Z, Yang J, Chen G, Jiang X, Chen J, Lyu Z. IgNAR characterization and gene loci identification in whitespotted bamboo shark (Chiloscyllium plagiosum) genome. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108535. [PMID: 36649810 DOI: 10.1016/j.fsi.2023.108535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Single domain antibodies (sdAb) are promising candidates in cancer and anti-virus biotherapies for their unique structure characters. Though VHH and IgNAR have been discovered in camelidae and nurse shark (Ginlymostoma cirratum) respectively serval decades ago, expense of these large animals still limits the studies and applications of sdAb. Recently, IgNAR has been found in whitespotted bamboo shark (Chiloscyllium plagiosum), a small-sized sharks, while how to characterize and achieved the IgNAR of whitespotted bamboo shark is still unclear. In our research, we identified four IgNAR coding gene loci in whitespotted bamboo shark chromosome 44 (NC_057753.1), and primers were designed for single domain variable regions of IgNAR (VNAR) libraries preparation. Following sequencing results revealed that all plasmids constructed with our predicted VNAR libraries contained VNAR coding sequences, which confirmed the specificities of our primers in VNAR amplification. To our surprise, ≥90% VNAR sequences were encoded by IgNAR1, which suggests IgNAR1 is the most active IgNAR transcription locus in whitespotted bamboo shark. Interestingly, we found IgNAR(ΔC2-C3) were encoded by IgNAR3. Our findings gave a new sight of whitespotted bamboo shark IgNAR, which would broad the way of IgNAR studies and applications in biotherapies.
Collapse
Affiliation(s)
- Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Yu Wang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Yajun Shen
- Economic Development Bureau of Shaoxing Binhai New Area Management Committee, 312090, Shaoxing, China.
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Guodong Chen
- Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China; Zhejiang Q-peptide Biotechnology Co., Ltd, 312366, Shaoxing, China.
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| |
Collapse
|
7
|
Shark New Antigen Receptor (IgNAR): Structure, Characteristics and Potential Biomedical Applications. Cells 2021; 10:cells10051140. [PMID: 34066890 PMCID: PMC8151367 DOI: 10.3390/cells10051140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Shark is a cartilaginous fish that produces new antigen receptor (IgNAR) antibodies. This antibody is identified with a similar human heavy chain but dissimilar sequences. The variable domain (VNAR) of IgNAR is stable and small in size, these features are desirable for drug discovery. Previous study results revealed the effectiveness of VNAR as a single molecule or a combination molecule to treat diseases both in vivo and in vitro with promising clinical applications. We showed the first evidence of IgNAR alternative splicing from spotted bamboo shark (Chiloscyllium plagiosum), broadening our understanding of the IgNARs characteristics. In this review, we summarize the discoveries on IgNAR with a focus on its advantages for therapeutic development based on its peculiar biochemistry and molecular structure. Proper applications of IgNAR will provide a novel avenue to understand its special presence in cartilaginous fishes as well as designing a number of drugs for undefeated diseases.
Collapse
|
8
|
Phage Display Technique as a Tool for Diagnosis and Antibody Selection for Coronaviruses. Curr Microbiol 2021; 78:1124-1134. [PMID: 33687511 PMCID: PMC7941128 DOI: 10.1007/s00284-021-02398-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand–receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host–pathogen interactions and assist novel strategies of drug discovery for coronaviruses.
Collapse
|
9
|
Cheong WS, Leow CY, Abdul Majeed AB, Leow CH. Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. Int J Biol Macromol 2020; 147:369-375. [PMID: 31926922 PMCID: PMC7112388 DOI: 10.1016/j.ijbiomac.2020.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/29/2022]
Abstract
Conventional monoclonal antibodies (mAbs) have been widely used in research and diagnostic applications due to their high affinity and specificity. However, multiple limitations, such as large size, complex structure and sensitivity to extreme ambient temperature potentially weaken the performance of mAbs in certain applications. To address this problem, the exploration of new antigen binders is extensively required in relation to improve the quality of current diagnostic platforms. In recent years, a new immunoglobulin-based protein, namely variable domain of new antigen receptor (VNAR) was discovered in sharks. Unlike conventional mAbs, several advantages of VNARs, include small size, better thermostability and peculiar paratope structure have attracted interest of researchers to further explore on it. This article aims to first present an overview of the shark VNARs and outline the characteristics as an outstanding new reagent for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wei Shien Cheong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
10
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
11
|
English H, Hong J, Ho M. Ancient species offers contemporary therapeutics: an update on shark V NAR single domain antibody sequences, phage libraries and potential clinical applications. Antib Ther 2020; 3:1-9. [PMID: 32118195 PMCID: PMC7034638 DOI: 10.1093/abt/tbaa001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
The antigen binding variable domain (VNAR) of the shark immunoglobulin new antigen receptor (IgNAR) evolved approximately 500 million years ago and it is one of the smallest antibody fragments in the animal kingdom with sizes of 12-15 kDa. This review discusses the current knowledge of the shark VNAR single domain sequences and ongoing development of shark VNARs as research tools as well as potential therapeutics, in particular highlighting the recent next-generation sequencing analysis of 1.2 million shark VNAR sequences and construction of a large phage displayed shark VNAR library from six naïve adult nurse sharks (Ginglymostoma cirratum). The large phage-displayed VNAR single domain library covers all the four known VNAR types (Types I-IV) and many previously unknown types. Ongoing preclinical development will help define the utility of shark VNAR single domains as a potentially new family of drug candidates for treating cancer and other human diseases.
Collapse
Affiliation(s)
- Hejiao English
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jessica Hong
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Leow CH, Fischer K, Leow CY, Braet K, Cheng Q, McCarthy J. Isolation and characterization of malaria PfHRP2 specific V NAR antibody fragments from immunized shark phage display library. Malar J 2018; 17:383. [PMID: 30355309 PMCID: PMC6201582 DOI: 10.1186/s12936-018-2531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability. METHODS In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken. RESULTS The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13. CONCLUSIONS Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
14
|
Böldicke T. Single domain antibodies for the knockdown of cytosolic and nuclear proteins. Protein Sci 2017; 26:925-945. [PMID: 28271570 PMCID: PMC5405437 DOI: 10.1002/pro.3154] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Structure and Function of ProteinsInhoffenstraße 7, D‐38124BraunschweigGermany
| |
Collapse
|
15
|
Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H. Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 2015; 7:15-25. [PMID: 25523873 PMCID: PMC4622739 DOI: 10.4161/19420862.2015.989032] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In addition to antibodies with the classical composition of heavy and light chains, the adaptive immune repertoire of sharks also includes a heavy-chain only isotype, where antigen binding is mediated exclusively by a small and highly stable domain, referred to as vNAR. In recent years, due to their high affinity and specificity combined with their small size, high physicochemical stability and low-cost of production, vNAR fragments have evolved as promising target-binding scaffolds that can be tailor-made for applications in medicine and biotechnology. This review highlights the structural features of vNAR molecules, addresses aspects of their generation using immunization or in vitro high throughput screening methods and provides examples of therapeutic, diagnostic and other biotechnological applications.
Collapse
Key Words
- CDR, complementarity-determining region
- HV, hypervariable region
- IgNAR
- IgNAR V domain, variable domain of IgNAR
- IgNAR, immunoglobulin new antigen receptor
- VH, variable domain of the heavy chain
- VHH, variable domain of camelid heavy chain antibodies
- VL, variable domain of the light chain
- antibody technology
- biologic therapeutic
- heavy chain antibody
- mAbs, monoclonal antibodies
- scFv, single chain variable fragment
- shark
- single chain binding domain
- vNAR, variable domain of IgNAR
Collapse
Affiliation(s)
- Stefan Zielonka
- a Institute for Organic Chemistry and Biochemistry ; Technische Universität Darmstadt ; Darmstadt , Germany
| | | | | | | | | | | |
Collapse
|
16
|
VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030240] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Kavanagh O, Elliott CT, Campbell K. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins. Anal Bioanal Chem 2015; 407:2749-70. [PMID: 25716465 DOI: 10.1007/s00216-015-8502-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/08/2023]
Abstract
Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.
Collapse
Affiliation(s)
- Owen Kavanagh
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK,
| | | | | |
Collapse
|
18
|
Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schäfer E, Steinmann B, Empting M, Ockelmann P, Lierz M, Kolmar H. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 2014; 191:236-45. [PMID: 24862193 DOI: 10.1016/j.jbiotec.2014.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
Abstract
A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.
Collapse
Affiliation(s)
- Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Niklas Weber
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christine Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christina Uth
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Janine Fritz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Elena Schäfer
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Björn Steinmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Pia Ockelmann
- Goethe-University Frankfurt, Faculty of Biosciences, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany; University Hospital Frankfurt, Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Gießen, Frankfurter Str. 91-93, D-35392 Giessen, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
19
|
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14:1527-39. [PMID: 25090369 DOI: 10.1517/14712598.2014.937701] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics drugs have succeeded in achieving a commercial dominance in the global market for new therapies and large pharmaceutical companies' interest remains strong through a continued commitment to pipeline development. It is not surprising, therefore, that next-generation biologics, particularly antibody-like scaffolds that offer many of the advantages of the original biologic drugs but in simplified formats, have entered the clinic as competing substitute therapeutic products, to capture market share. AREAS COVERED Specifically, this paper will position shark-derived variable new antigen receptors (VNARs) within an overview of the existing biologics landscape including the growth, diversity and success to date of alternative scaffolds. The intention is not to provide a comprehensive review of biologics as a whole but to discuss the main competing single-domain technologies and the exciting therapeutic potential of VNAR domains as clinical candidates within this context. EXPERT OPINION The inherent ability to specifically bind target and intervene in disease-related biological processes, while reducing off-site toxicity, makes mAbs an effective, potent and now proven class of therapeutics. There are, however, limitations to these 'magic bullets'. Their size and complexity can restrict their utility in certain diseases types and disease locations. In contrast, a number of so-called alternative scaffolds, derived from both immunoglobulin- and non-immunoglobulin-based sources have been developed with real potential to overcome many of the shortcomings documented for mAb treatments. Unlike competing approaches such as Darpins and Affibodies, we now know that shark VNAR domains (like camel VHH nanobody domains), are an integral part of the adaptive immune system of these animals and have evolved naturally (but from very different starting molecules) to exhibit high affinity and selectivity for target. In addition, and again influenced by the environment in which they have evolved naturally, their small size, simple architecture, high solubility and stability, deliver additional flexibility compared to classical antibodies (and many non-natural alternative scaffolds), thereby providing an attractive basis for particular clinical indications where these attributes may offer advantages.
Collapse
Affiliation(s)
- Marina Kovaleva
- University of Aberdeen, Institute of Medical Sciences, College of Life Sciences and Medicine , Foresterhill, Aberdeen, AB25 2ZD , UK +012 2443 8545 ;
| | | | | | | | | |
Collapse
|
20
|
Ebrahimizadeh W, Rajabibazl M. Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr Microbiol 2014; 69:109-20. [PMID: 24638925 DOI: 10.1007/s00284-014-0557-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/26/2014] [Indexed: 11/29/2022]
Abstract
The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.
Collapse
Affiliation(s)
- Walead Ebrahimizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran,
| | | |
Collapse
|
21
|
Liu JL, Zabetakis D, Brown JC, Anderson GP, Goldman ER. Thermal stability and refolding capability of shark derived single domain antibodies. Mol Immunol 2014; 59:194-9. [DOI: 10.1016/j.molimm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
|