1
|
Bauermeister A, Furtado LC, Ferreira EG, Moreira EA, Jimenez PC, Lopes NP, Araújo WL, Olchanheski LR, Monteiro da Cruz Lotufo T, Costa-Lotufo LV. Chemical and microbial diversity of a tropical intertidal ascidian holobiont. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106303. [PMID: 38150785 DOI: 10.1016/j.marenvres.2023.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil; Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Costa Furtado
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Elthon G Ferreira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Eduarda Antunes Moreira
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Luiz Ricardo Olchanheski
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Becerril-Espinosa A, Hernández-Herrera RM, Meza-Canales ID, Perez-Ramirez R, Rodríguez-Zaragoza FA, Méndez-Morán L, Sánchez-Hernández CV, Palmeros-Suárez PA, Palacios OA, Choix FJ, Juárez-Carrillo E, Lara-González MA, Hurtado-Oliva MÁ, Ocampo-Alvarez H. Habitat-adapted heterologous symbiont Salinispora arenicola promotes growth and alleviates salt stress in tomato crop plants. FRONTIERS IN PLANT SCIENCE 2022; 13:920881. [PMID: 36003821 PMCID: PMC9393590 DOI: 10.3389/fpls.2022.920881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosalba M. Hernández-Herrera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivan D. Meza-Canales
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto Transdisciplinar de Investigación y Servicios, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rodrigo Perez-Ramirez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lucila Méndez-Morán
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carla V. Sánchez-Hernández
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oskar A. Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J. Choix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha A. Lara-González
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
3
|
Matos A, Antunes A. Symbiotic Associations in Ascidians: Relevance for Functional Innovation and Bioactive Potential. Mar Drugs 2021; 19:370. [PMID: 34206769 PMCID: PMC8303170 DOI: 10.3390/md19070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production-e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians' microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.
Collapse
Affiliation(s)
- Ana Matos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Chen RW, He YQ, Cui LQ, Li C, Shi SB, Long LJ, Tian XP. Diversity and Distribution of Uncultured and Cultured Gaiellales and Rubrobacterales in South China Sea Sediments. Front Microbiol 2021; 12:657072. [PMID: 34220745 PMCID: PMC8248818 DOI: 10.3389/fmicb.2021.657072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria are ubiquitous in marine ecosystems, and they are regarded as an important, underexplored, potential pharmaceutical resource. The orders Gaiellales and Rubrobacterales are deep taxonomic lineages of the phylum Actinobacteria, both are represented by a single genus and contain only a few species. Although they have been detected frequently by high-throughput sequencing, their functions and characteristics in marine habitats remain unknown due to the lack of indigenous phenotypes. Here, we investigated the status of the orders in South China Sea (SCS) sediments using culture-independent and culture-dependent methods. Gaiellales is the second-most abundant order of Actinobacteria and was widely distributed in SCS sediments at water depths of 42-4,280 m, and four novel marine representatives in this group were successfully cultured. Rubrobacterales was present at low abundance in energy-limited marine habitats. An isolation strategy for Rubrobacterales from marine samples was proposed, and a total of 138 mesophilic Rubrobacterales strains were isolated under conditions of light and culture time combined with high-salinity or low-nutrient media. Marine representatives recovered in this study formed branches with a complex evolutionary history in the phylogenetic tree. Overall, the data indicate that both Gaiellales and Rubrobacterales can adapt to and survive in extreme deep-sea environments. This study lays the groundwork for further analysis of the distribution and diversity of the orders Gaiellales and Rubrobacterales in the ocean and provides a specific culture strategy for each group. The results open a window for further research on the ecological roles of the two orders in marine ecosystems.
Collapse
Affiliation(s)
- Rou-Wen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qiu He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Qing Cui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song-Biao Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
5
|
Brunet M, de Bettignies F, Le Duff N, Tanguy G, Davoult D, Leblanc C, Gobet A, Thomas F. Accumulation of detached kelp biomass in a subtidal temperate coastal ecosystem induces succession of epiphytic and sediment bacterial communities. Environ Microbiol 2021; 23:1638-1655. [PMID: 33400326 PMCID: PMC8248336 DOI: 10.1111/1462-2920.15389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/30/2022]
Abstract
Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a 6-month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially, dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide-degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favouring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Gwenn Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de RoscoffRoscoff29680France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDSèteFrance
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| |
Collapse
|
6
|
Natural Products in Polyclad Flatworms. Mar Drugs 2021; 19:md19020047. [PMID: 33494164 PMCID: PMC7909797 DOI: 10.3390/md19020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.
Collapse
|
7
|
Culture-Dependent Microbiome of the Ciona intestinalis Tunic: Isolation, Bioactivity Profiling and Untargeted Metabolomics. Microorganisms 2020; 8:microorganisms8111732. [PMID: 33167375 PMCID: PMC7694362 DOI: 10.3390/microorganisms8111732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023] Open
Abstract
Ascidians and their associated microbiota are prolific producers of bioactive marine natural products. Recent culture-independent studies have revealed that the tunic of the solitary ascidian Cionaintestinalis (sea vase) is colonized by a diverse bacterial community, however, the biotechnological potential of this community has remained largely unexplored. In this study, we aimed at isolating the culturable microbiota associated with the tunic of C.intestinalis collected from the North and Baltic Seas, to investigate their antimicrobial and anticancer activities, and to gain first insights into their metabolite repertoire. The tunic of the sea vase was found to harbor a rich microbial community, from which 89 bacterial and 22 fungal strains were isolated. The diversity of the tunic-associated microbiota differed from that of the ambient seawater samples, but also between sampling sites. Fungi were isolated for the first time from the tunic of Ciona. The proportion of bioactive extracts was high, since 45% of the microbial extracts inhibited the growth of human pathogenic bacteria, fungi or cancer cell lines. In a subsequent bioactivity- and metabolite profiling-based approach, seven microbial extracts were prioritized for in-depth chemical investigations. Untargeted metabolomics analyses of the selected extracts by a UPLC-MS/MS-based molecular networking approach revealed a vast chemical diversity with compounds assigned to 22 natural product families, plus many metabolites that remained unidentified. This initial study indicates that bacteria and fungi associated with the tunic of C.intestinalis represent an untapped source of putatively new marine natural products with pharmacological relevance.
Collapse
|
8
|
Dou X, Dong B. Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts. Mar Drugs 2019; 17:md17120670. [PMID: 31795141 PMCID: PMC6950356 DOI: 10.3390/md17120670] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.
Collapse
Affiliation(s)
- Xiaoju Dou
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China
| | - Bo Dong
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel.: +86-0532-82032732
| |
Collapse
|
9
|
Velasco-Alzate KY, Bauermeister A, Tangerina MMP, Lotufo TMC, Ferreira MJP, Jimenez PC, Padilla G, Lopes NP, Costa-Lotufo LV. Marine Bacteria from Rocas Atoll as a Rich Source of Pharmacologically Active Compounds. Mar Drugs 2019; 17:md17120671. [PMID: 31795148 PMCID: PMC6949966 DOI: 10.3390/md17120671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Rocas Atoll is a unique environment in the equatorial Atlantic Ocean, hosting a large number of endemic species, however, studies on the chemical diversity emerging from this biota are rather scarce. Therefore, the present work aims to assess the metabolomic diversity and pharmacological potential of the microbiota from Rocas Atoll. A total of 76 bacteria were isolated and cultured in liquid culture media to obtain crude extracts. About one third (34%) of these extracts were recognized as cytotoxic against human colon adenocarcinoma HCT-116 cell line. 16S rRNA gene sequencing analyses revealed that the bacteria producing cytotoxic extracts were mainly from the Actinobacteria phylum, including Streptomyces, Salinispora, Nocardiopsis, and Brevibacterium genera, and in a smaller proportion from Firmicutes phylum (Bacillus). The search in the spectral library in GNPS (Global Natural Products Social Molecular Networking) unveiled a high chemodiversity being produced by these bacteria, including rifamycins, antimycins, desferrioxamines, ferrioxamines, surfactins, surugamides, staurosporines, and saliniketals, along with several unidentified compounds. Using an original approach, molecular networking successfully highlighted groups of compounds responsible for the cytotoxicity of crude extracts. Application of DEREPLICATOR+ (GNPS) allowed the annotation of macrolide novonestimycin derivatives as the cytotoxic compounds existing in the extracts produced by Streptomyces BRB-298 and BRB-302. Overall, these results highlighted the pharmacological potential of bacteria from this singular atoll.
Collapse
Affiliation(s)
- Karen Y. Velasco-Alzate
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo/SP, Brazil; (K.Y.V.-A.); (A.B.)
| | - Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo/SP, Brazil; (K.Y.V.-A.); (A.B.)
- NPPNS, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto/SP, Brazil;
| | - Marcelo M. P. Tangerina
- Departamento do Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo/SP, Brazil (M.J.P.F.)
| | - Tito M. C. Lotufo
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, 05508-120 São Paulo/SP, Brazil;
| | - Marcelo J. P. Ferreira
- Departamento do Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo/SP, Brazil (M.J.P.F.)
| | - Paula C. Jimenez
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11015-020 Santos/SP, Brazil;
| | - Gabriel Padilla
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo/SP, Brazil;
| | - Norberto P. Lopes
- NPPNS, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto/SP, Brazil;
| | - Letícia V. Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo/SP, Brazil; (K.Y.V.-A.); (A.B.)
- Correspondence: or ; Tel.: +55-11-30917316
| |
Collapse
|
10
|
Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T, Mohr KI, Wink J, Engelmann M, Praditya DF, Steinmann E, Schupp PJ. Biotechnological Potential of Bacteria Isolated from the Sea Cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Mar Drugs 2019; 17:E635. [PMID: 31717405 PMCID: PMC6891442 DOI: 10.3390/md17110635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.
Collapse
Affiliation(s)
- Joko T. Wibowo
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Matthias Y. Kellermann
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Dennis Versluis
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Masteria Y. Putra
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Tutik Murniasih
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Kathrin I. Mohr
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Joachim Wink
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Michael Engelmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dimas F. Praditya
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Research Center for Biotechnology, Indonesian Institute of Science, Jl. Raya Bogor KM 46, 16911 Cibinong, Indonesia
| | - Eike Steinmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Peter J. Schupp
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
11
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
12
|
Tuttle RN, Demko AM, Patin NV, Kapono CA, Donia MS, Dorrestein P, Jensen PR. Detection of Natural Products and Their Producers in Ocean Sediments. Appl Environ Microbiol 2019; 85:e02830-18. [PMID: 30737349 PMCID: PMC6450032 DOI: 10.1128/aem.02830-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Thousands of natural products have been identified from cultured microorganisms, yet evidence of their production in the environment has proven elusive. Technological advances in mass spectrometry, combined with public databases, now make it possible to address this disparity by detecting compounds directly from environmental samples. Here, we used adsorbent resins, tandem mass spectrometry, and next-generation sequencing to assess the metabolome of marine sediments and its relationship to bacterial community structure. We identified natural products previously reported from cultured bacteria, providing evidence they are produced in situ, and compounds of anthropogenic origin, suggesting this approach can be used as an indicator of environmental impact. The bacterial metabolite staurosporine was quantified and shown to reach physiologically relevant concentrations, indicating that it may influence sediment community structure. Staurosporine concentrations were correlated with the relative abundance of the staurosporine-producing bacterial genus Salinispora and production confirmed in strains cultured from the same location, providing a link between compound and candidate producer. Metagenomic analyses revealed numerous biosynthetic gene clusters related to indolocarbazole biosynthesis, providing evidence for noncanonical sources of staurosporine and a path forward to assess the relationships between natural products and the organisms that produce them. Untargeted environmental metabolomics circumvents the need for laboratory cultivation and represents a promising approach to understanding the functional roles of natural products in shaping microbial community structure in marine sediments.IMPORTANCE Natural products are readily isolated from cultured bacteria and exploited for useful purposes, including drug discovery. However, these compounds are rarely detected in the environments from which the bacteria are obtained, thus limiting our understanding of their ecological significance. Here, we used environmental metabolomics to directly assess chemical diversity in marine sediments. We identified numerous metabolites and, in one case, isolated strains of bacteria capable of producing one of the compounds detected. Coupling environmental metabolomics with community and metagenomic analyses provides opportunities to link compounds and producers and begin to assess the complex interactions mediated by specialized metabolites in marine sediments.
Collapse
Affiliation(s)
- Robert N Tuttle
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Nastassia V Patin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Clifford A Kapono
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Chen L, Hu JS, Xu JL, Shao CL, Wang GY. Biological and Chemical Diversity of Ascidian-Associated Microorganisms. Mar Drugs 2018; 16:md16100362. [PMID: 30275404 PMCID: PMC6212887 DOI: 10.3390/md16100362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022] Open
Abstract
Ascidians are a class of sessile filter-feeding invertebrates, that provide unique and fertile niches harboring various microorganisms, such as bacteria, actinobacteria, cyanobacteria and fungi. Over 1000 natural products, including alkaloids, cyclic peptides, and polyketides, have been isolated from them, which display diverse properties, such as antibacterial, antifungal, antitumor, and anti-inflammatory activities. Strikingly, direct evidence has confirmed that ~8% of natural products from ascidians are actually produced by symbiotic microorganisms. In this review, we present 150 natural products from microorganisms associated with ascidians that have been reported up to 2017.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jin-Shuang Hu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jia-Lei Xu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Chang-Lun Shao
- Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
14
|
Alvarado P, Huang Y, Wang J, Garrido I, Leiva S. Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae. Antonie Van Leeuwenhoek 2018; 111:1543-1555. [PMID: 29460205 DOI: 10.1007/s10482-018-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
Marine macroalgae are emerging as an untapped source of novel microbial diversity and, therefore, of new bioactive secondary metabolites. This study was aimed at assessing the diversity and antimicrobial activity of the culturable Gram-positive bacteria associated with the surface of three co-occurring Antarctic macroalgae. Specimens of Adenocystis utricularis (brown alga), Iridaea cordata (red alga) and Monostroma hariotii (green alga) were collected from the intertidal zone of King George Island, Antarctica. Gram-positive bacteria were investigated by cultivation-based methods and 16S rRNA gene sequencing, and screened for antimicrobial activity against a panel of pathogenic microorganisms. Isolates were found to belong to 12 families, with a dominance of Microbacteriaceae and Micrococcaceae. Seventeen genera of Actinobacteria and 2 of Firmicutes were cultured from the three macroalgae, containing 29 phylotypes. Three phylotypes within Actinobacteria were regarded as potentially novel species. Sixteen isolates belonging to the genera Agrococcus, Arthrobacter, Micrococcus, Pseudarthrobacter, Pseudonocardia, Sanguibacter, Staphylococcus, Streptomyces and Tessaracoccus exhibited antibiotic activity against at least one of the indicator strains. The bacterial phylotype composition was distinct among the three macroalgae species, suggesting that these macroalgae host species-specific Gram-positive associates. The results highlight the importance of Antarctic macroalgae as a rich source of Gram-positive bacterial diversity and potentially novel species, and a reservoir of bacteria producing biologically active compounds with pharmacological potential.
Collapse
Affiliation(s)
- Pamela Alvarado
- Universidad Tecnológica de Chile INACAP, Avenida René Soriano 2382, Osorno, Chile
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ignacio Garrido
- Département de Biologie et Québec-Océan, Université Laval, Pavillon Alexandre-Vachon 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
- Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Sergio Leiva
- Instituto de Bioquímica & Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| |
Collapse
|
15
|
Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China. Syst Appl Microbiol 2018; 41:516-527. [PMID: 29934111 DOI: 10.1016/j.syapm.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%-43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.
Collapse
|
16
|
BluePharmTrain: Biology and Biotechnology of Marine Sponges. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Bauermeister A, Branco PC, Furtado LC, Jimenez PC, Costa-Lotufo LV, da Cruz Lotufo TM. Tunicates: A model organism to investigate the effects of associated-microbiota on the production of pharmaceuticals. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Taxonomic and Metabolite Diversity of Actinomycetes Associated with Three Australian Ascidians. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Chen L, Fu C, Wang G. Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 2016. [DOI: 10.1007/s13199-016-0398-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Riquelme C, Marshall Hathaway JJ, Enes Dapkevicius MDLN, Miller AZ, Kooser A, Northup DE, Jurado V, Fernandez O, Saiz-Jimenez C, Cheeptham N. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions. Front Microbiol 2015; 6:1342. [PMID: 26696966 PMCID: PMC4673402 DOI: 10.3389/fmicb.2015.01342] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022] Open
Abstract
Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems.
Collapse
Affiliation(s)
- Cristina Riquelme
- Food Science and Health Group (CITA-A), Departamento de Ciências Agrárias, Universidade dos Açores Angra do Heroísmo, Portugal
| | | | - Maria de L N Enes Dapkevicius
- Food Science and Health Group (CITA-A), Departamento de Ciências Agrárias, Universidade dos Açores Angra do Heroísmo, Portugal
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas Sevilla, Spain
| | - Ara Kooser
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas Sevilla, Spain
| | | | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas Sevilla, Spain
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University Kamloops, BC, Canada
| |
Collapse
|