1
|
Mohideen AMSH, Johansen SD, Babiak I. mtR_find: A Parallel Processing Tool to Identify and Annotate RNAs Derived from the Mitochondrial Genome. Int J Mol Sci 2023; 24:ijms24054373. [PMID: 36901804 PMCID: PMC10001721 DOI: 10.3390/ijms24054373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of length variants, sequence variants, and other modifications, necessitate the need for the development of an appropriate tool for their effective identification and annotation. We have developed mtR_find, a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived long non-coding RNAs (mt-lncRNA). mtR_find uses a novel method to compute the count of RNA sequences from adapter-trimmed reads. When analyzing the published datasets with mtR_find, we identified mt-sRNAs significantly associated with the health conditions, such as hepatocellular carcinoma and obesity, and we discovered novel mt-sRNAs. Furthermore, we identified mt-lncRNAs in early development in mice. These examples show the immediate impact of miR_find in extracting a novel biological information from the existing sequencing datasets. For benchmarking, the tool has been tested on a simulated dataset and the results were concordant. For accurate annotation of mitochondria-derived RNA, particularly mt-sRNA, we developed an appropriate nomenclature. mtR_find encompasses the mt-ncRNA transcriptomes in unpreceded resolution and simplicity, allowing re-analysis of the existing transcriptomic databases and the use of mt-ncRNAs as diagnostic or prognostic markers in the field of medicine.
Collapse
|
2
|
Global view of dynamic expression and precise mapping of mitochondrial tRNAs-derived fragments during stressed conditions in S. pombe. Mitochondrion 2021; 60:219-227. [PMID: 34428580 DOI: 10.1016/j.mito.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 01/30/2023]
Abstract
In this study, we provide a global view of population and processing of mitochondrial tRNAs-derived fragments (mt-tRFs) in fission yeast Schizosaccharomyces pombe. Here, mt-tRFs of 15-30 nucleotides were retrieved from S. pombe small RNA libraries obtained from unstressed, stress, and during stationary phase conditions. We demonstrate that production of these fragments increase during heat stress and stationary phase conditions in S. pombe, especially (most notably) in stationary phase. Analysis of data also reveals depending on the tRNA, either 5'-mt-tRF or 3'-mt-tRF was found and major mt-tRNA processing sites have been precisely identified. Furthermore, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNase ZL globally impairs mt-tRF processing. Finally, our result showed mt-tRFs were predicted to target mitochondrial genome mapping mtDNA-encoded protein gene. These observations suggest that mitochondrial tRFs may play an important regulatory role in response to stress and development.
Collapse
|
3
|
Thairu MW, Meduri VRS, Degnan PH, Hansen AK. Natural selection shapes maintenance of orthologous sRNAs in divergent host-restricted bacterial genomes. Mol Biol Evol 2021; 38:4778-4791. [PMID: 34213555 PMCID: PMC8557413 DOI: 10.1093/molbev/msab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA.,Department of Bacteriology, University of Wisconsin, Madison, Madison, WI
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|
4
|
Weber GM, Birkett J, Martin K, Dixon D, Gao G, Leeds TD, Vallejo RL, Ma H. Comparisons among rainbow trout, Oncorhynchus mykiss, populations of maternal transcript profile associated with egg viability. BMC Genomics 2021; 22:448. [PMID: 34130620 PMCID: PMC8207762 DOI: 10.1186/s12864-021-07773-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07773-1.
Collapse
Affiliation(s)
- Gregory M Weber
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA.
| | - Jill Birkett
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | | | - Guangtu Gao
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Timothy D Leeds
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Roger L Vallejo
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Hao Ma
- USDA/ARS Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
5
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
6
|
MitosRNAs and extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus. Sci Rep 2019; 9:19812. [PMID: 31874982 PMCID: PMC6930250 DOI: 10.1038/s41598-019-56231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species. A recent study of small ncRNA expression in A. limnaeus embryos in response to anoxia and aerobic recovery revealed small ncRNAs with expression patterns that suggest a role in supporting anoxia tolerance. MitosRNAs, small ncRNAs derived from the mitochondrial genome, emerged as an interesting group of these sequences. MitosRNAs derived from mitochondrial tRNAs were differentially expressed in developing embryos and isolated cells exhibiting extreme anoxia tolerance. In this study we focus on expression of mitosRNAs derived from tRNA-cysteine, and their subcellular and organismal localization in order to consider possible function. These tRNA-cys mitosRNAs appear enriched in the mitochondria, particularly near the nucleus, and also appear to be present in the cytoplasm. We provide evidence that mitosRNAs are generated in the mitochondria in response to anoxia, though the precise mechanism of biosynthesis remains unclear. MitosRNAs derived from tRNA-cys localize to numerous tissues, and increase in the anterior brain during anoxia. We hypothesize that these RNAs may play a role in regulating gene expression that supports extreme anoxia tolerance.
Collapse
|
7
|
Thairu MW, Hansen AK. Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont, Buchnera. mBio 2019; 10:e01733-19. [PMID: 31744912 PMCID: PMC6867890 DOI: 10.1128/mbio.01733-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Plants are a difficult food resource to use, and herbivorous insects have evolved a variety of mechanisms that allow them to fully exploit this poor nutritional resource. One such mechanism is the maintenance of bacterial symbionts that aid in host plant feeding and development. The majority of these intracellular symbionts have highly eroded genomes that lack many key regulatory genes; consequently, it is unclear if these symbionts can respond to changes in the insect's diet to facilitate host plant use. There is emerging evidence that symbionts with highly eroded genomes express small RNAs (sRNAs), some of which potentially regulate gene expression. In this study, we sought to determine if the reduced genome of the nutritional symbiont (Buchnera) in the pea aphid responds to changes in the aphid's host plant diet. Using transcriptome sequencing (RNA-seq), Buchnera sRNA expression profiles were characterized within two Buchnera life stages when pea aphids fed on either alfalfa or fava bean. Overall, this study demonstrates that Buchnera sRNA expression changes not only with life stage but also with changes in aphid host plant diet. Of the 321 sRNAs characterized in this study, 47% were previously identified and 22% showed evidence of conservation in two or more Buchnera taxa. Functionally, 13 differentially expressed sRNAs were predicted to target genes related to pathways involved in essential amino acid biosynthesis. Overall, results from this study reveal that host plant diet influences the expression of conserved and lineage-specific sRNAs in Buchnera and that these sRNAs display distinct host plant-specific expression profiles among biological replicates.IMPORTANCE In general, the genomes of intracellular bacterial symbionts are reduced compared to those of free-living relatives and lack many key regulatory genes. Many of these reduced genomes belong to obligate mutualists of insects that feed on a diet that is deficient in essential nutrients, such as essential amino acids. It is unclear if these symbionts respond with their host to changes in insect diet, because of their reduced regulatory capacity. Emerging evidence suggests that these symbionts express small RNAs (sRNAs) that regulate gene expression at the posttranscriptional level. Therefore, in this study, we sought to determine if the reduced genome of the nutritional symbiont Buchnera in the pea aphid responds to changes in the aphid's host plant diet. This study demonstrates for the first time that Buchnera sRNAs, some conserved in two or more Buchnera lineages, are differentially expressed when aphids feed on different plant species and potentially target genes within essential amino acid biosynthesis pathways.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, California, USA
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
8
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
9
|
Ma H, Martin K, Dixon D, Hernandez AG, Weber GM. Transcriptome analysis of egg viability in rainbow trout, Oncorhynchus mykiss. BMC Genomics 2019; 20:319. [PMID: 31029084 PMCID: PMC6486991 DOI: 10.1186/s12864-019-5690-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Maternal transcripts are accumulated in the oocyte during oogenesis to provide for protein synthesis from oocyte maturation through early embryonic development, when nuclear transcription is silenced. The maternal mRNAs have short poly(A) tails after undergoing post-transcriptional processing necessary for stabilizing them for storage. The transcripts undergo cytoplasmic polyadenylation when they are to be translated. Transcriptome analyses comparing total mRNA and elongated poly(A) mRNA content among eggs of different quality can provide insight into molecular mechanisms affecting egg developmental competence in rainbow trout. The present study used RNA-seq to compare transcriptomes of unfertilized eggs of rainbow trout females yielding different eyeing rates, following rRNA removal and poly(A) retention for construction of the libraries. Results The percentage of embryos to reach the 32-cell stage at 24 h post fertilization was significantly correlated to family eyeing rate, indicating that inviable embryos were developmentally compromised before zygotic genome activation. RNA sequencing identified 2 differentially expressed transcripts (DETs) from total mRNA sequencing comparing females with low-quality (< 5% eyeing), medium-quality (30–50% eyeing), and high-quality (> 80% eyeing) eggs. In contrast, RNA sequencing from poly(A) captured transcripts identified 945 DETs between low- and high-quality eggs, 1012 between low- and medium-quality eggs, and only 2 between medium- and high-quality eggs. The transcripts of mitochondrial genes were enriched with polyadenylated transcript sequencing and they were significantly reduced in low-quality eggs. Similarly, mitochondrial DNA was reduced in low-quality eggs compared with medium- and high-quality eggs. The functional gene analysis classified the 945 DETs between low- and high-quality eggs into 31 functional modules, many of which were related to ribosomal and mitochondrial functions. Other modules involved transcription, translation, cell division, apoptosis, and immune responses. Conclusions Our results indicate that differences in egg quality may be derived from differences in maternal nuclear transcript activation and cytoplasmic polyadenylation before ovulation, as opposed to accumulation and storage of maternal nuclear transcripts during oogenesis. Transcriptome comparisons suggest low-quality eggs suffered from impaired oxidative phosphorylation and translation. The DETs identified in this study provide insight into developmental competence in rainbow trout eggs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5690-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Ma
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | | | | | - Gregory M Weber
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA.
| |
Collapse
|
10
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
11
|
Shang J, Yang Y, Wu L, Zou M, Huang Y. The S. pombe mitochondrial transcriptome. RNA (NEW YORK, N.Y.) 2018; 24:1241-1254. [PMID: 29954949 PMCID: PMC6097661 DOI: 10.1261/rna.064477.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/26/2018] [Indexed: 05/22/2023]
Abstract
Mitochondrial gene expression is largely controlled through post-transcriptional processes including mitochondrial RNA (mt-RNA) processing, modification, decay, and quality control. Defective mitochondrial gene expression results in mitochondrial oxidative phosphorylation (OXPHOS) deficiency and has been implicated in human disease. To fully understand mitochondrial transcription and RNA processing, we performed RNA-seq analyses of mt-RNAs from the fission yeast Schizosaccharomyces pombe RNA-seq analyses show that the abundance of mt-RNAs vary greatly. Analysis of data also reveals mt-RNA processing sites including an unusual RNA cleavage event by mitochondrial tRNA (mt-tRNA) 5'-end processing enzyme RNase P. Additionally, this analysis reveals previously unknown mitochondrial transcripts including the rnpB-derived fragment, mitochondrial small RNAs (mitosRNAs) such as mt-tRNA-derived fragments (mt-tRFs) and mt-tRNA halves, and mt-tRNAs marked with 3'-CCACCA/CCACC in S. pombe Finally, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNA 3'-end processing enzyme globally impairs mt-tRNA 3'-end processing, inhibits mt-mRNA 5'-end processing, and causes accumulation of unprocessed transcripts, demonstrating the feasibility of using RNA-seq to examine the protein known or predicted to be involved in mt-RNA processing in S. pombe Our work uncovers the complexity of a fungal mitochondrial transcriptome and provides a framework for future studies of mitochondrial gene expression using S. pombe as a model system.
Collapse
Affiliation(s)
- Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
12
|
Bottje WG, Khatri B, Shouse SA, Seo D, Mallmann B, Orlowski SK, Pan J, Kong S, Owens CM, Anthony NB, Kim JK, Kong BC. Identification and Differential Abundance of Mitochondrial Genome Encoding Small RNAs (mitosRNA) in Breast Muscles of Modern Broilers and Unselected Chicken Breed. Front Physiol 2017; 8:816. [PMID: 29104541 PMCID: PMC5655574 DOI: 10.3389/fphys.2017.00816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023] Open
Abstract
Background: Although small non-coding RNAs are mostly encoded by the nuclear genome, thousands of small non-coding RNAs encoded by the mitochondrial genome, termed as mitosRNAs were recently reported in human, mouse and trout. In this study, we first identified chicken mitosRNAs in breast muscle using small RNA sequencing method and the differential abundance was analyzed between modern pedigree male (PeM) broilers (characterized by rapid growth and large muscle mass) and the foundational Barred Plymouth Rock (BPR) chickens (characterized by slow growth and small muscle mass). Methods: Small RNA sequencing was performed with total RNAs extracted from breast muscles of PeM and BPR (n = 6 per group) using the 1 × 50 bp single end read method of Illumina sequencing. Raw reads were processed by quality assessment, adapter trimming, and alignment to the chicken mitochondrial genome (GenBank Accession: X52392.1) using the NGen program. Further statistical analyses were performed using the JMP Genomics 8. Differentially expressed (DE) mitosRNAs between PeM and BPR were confirmed by quantitative PCR. Results: Totals of 183,416 unique small RNA sequences were identified as potential chicken mitosRNAs. After stringent filtering processes, 117 mitosRNAs showing >100 raw read counts were abundantly produced from all 37 mitochondrial genes (except D-loop region) and the length of mitosRNAs ranged from 22 to 46 nucleotides. Of those, abundance of 44 mitosRNAs were significantly altered in breast muscles of PeM compared to those of BPR: all mitosRNAs were higher in PeM breast except those produced from 16S-rRNA gene. Possibly, the higher mitosRNAs abundance in PeM breast may be due to a higher mitochondrial content compared to BPR. Our data demonstrate that in addition to 37 known mitochondrial genes, the mitochondrial genome also encodes abundant mitosRNAs, that may play an important regulatory role in muscle growth via mitochondrial gene expression control.
Collapse
Affiliation(s)
- Walter G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Stephanie A Shouse
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Dongwon Seo
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Barbara Mallmann
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Jeonghoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Seongbae Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Casey M Owens
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nicholas B Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Jae K Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi C Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|