1
|
Islam DT, Williams MR, Teppen BJ, Johnston CT, Li H, Boyd SA, Zylstra GJ, Fennell DE, Cupples AM, Hashsham SA. Comprehensive model for predicting toxic equivalents (TEQ) reduction due to dechlorination of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/F congeners). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135749. [PMID: 39276747 DOI: 10.1016/j.jhazmat.2024.135749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Remediation-focused predictive tools for polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) rely on transformation models to evaluate the reduction in total contaminant load and toxic equivalency (TEQ). In this study, a comprehensive model predicting the profiles of PCDD/F congeners and the associated TEQs was developed. The model employs first-order kinetics to describe the transformation of 256 reactions for 75 PCDD congeners and 421 reactions for 135 PCDF congeners. It integrates the growth of anaerobic microbial guilds using Monod kinetics on hydrogen release compounds and stoichiometric growth for Dehalococcoides sp. The effects of temperature, salinity, pH, and availability of vitamin B12 (a cofactor) were also integrated. The PCDD/F congeners model was used to extract the first-order dechlorination rate constants from a number of pure culture and mixed microbial microcosm studies. Simulations for the transformation of PCDD/F congeners at concentrations representative of the Tittabawassee or Saginaw Rivers and watershed in MI, USA were carried out. For a starting TEQ of 5000 ng per kg dry sediment (ppt), the model predicted a decrease in the overall TEQ to below 2000 ppt after 2.6 years and below 250 ppt after ∼21 years. The developed model may be used for extracting rates from microcosm studies and to evaluate the effect of engineering interventions on TEQ reduction.
Collapse
Affiliation(s)
- Dar Tafazul Islam
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Brian J Teppen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Cliff T Johnston
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Gerben J Zylstra
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Cheng YH, Chang SC, Lai YL, Hu CC. Microbiome reengineering by four environmental factors for the rapid biodegradation of trichloroethylene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116658. [PMID: 36399881 DOI: 10.1016/j.jenvman.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Trichloroethylene (TCE) was once a widely applied industrial solvent, but is now an infamous contaminant in groundwater. Although anaerobic reductive dechlorination is considered a greener remediation approach, the accumulation of toxic intermediates, such as vinyl chloride (VC), and a longer remediation period are highly concerning. Biostimulation and bioaugmentation have been developed to solve these problems. The former method may not be effective, and the latter may introduce foreign genes. Here, we propose a new approach by applying environmental stresses to reshape the indigenous microbiome. In this study, by using the Taguchi method, the effects of heating, pH, salinity, and desiccation were systematically examined. The optimum conditions were defined as 50 °C, pH 9, 3.50% salinity (w/v), and 21% volumetric water content (θW). The top performing group, G7, can complete the conversion of 11.81 mg/L TCE into ethene in 3.0 days with a 1.23% abundance of Dehalococcoides mccartyi 195 (Dhc 195). Redundancy analysis confirmed that temperature and salinity were the predominant factors in reorganizing the microbiomes. The microbiome structure and its effectiveness can last for at least 90 d. The repetitive selection conditions and sustainable degradation capability strongly supported that microbiome reengineering is feasible for the rapid bioremediation of TCE-contaminated environmental matrices.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Shu-Chi Chang
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| | - Yan-Lin Lai
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
3
|
Camargo K, Vogelbein MA, Horney JA, Dellapenna TM, Knap AH, Sericano JL, Wade TL, McDonald TJ, Chiu WA, Unger MA. Biosensor applications in contaminated estuaries: Implications for disaster research response. ENVIRONMENTAL RESEARCH 2022; 204:111893. [PMID: 34419473 PMCID: PMC8639622 DOI: 10.1016/j.envres.2021.111893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Given the time and monetary costs associated with traditional analytical chemistry, there remains a need to rapidly characterize environmental samples for priority analysis, especially within disaster research response (DR2). As PAHs are both ubiquitous and occur as complex mixtures at many National Priority List sites, these compounds are of interest for post-disaster exposures. OBJECTIVE This study tests the field application of the KinExA Inline Biosensor in Galveston Bay and the Houston Ship Channel (GB/HSC) and in the Elizabeth River, characterizing the PAH profiles of these region's soils and sediments. To our knowledge, this is the first application of the biosensor to include soils. METHODS The biosensor enables calculation of total free PAHs in porewater (C free), which is confirmed through gas chromatography-mass spectrometry (GC-MS) analysis. To determine potential risk of the collected soils the United States Environmental Protection (USEPA) Agency's Regional Screening Level (RSL) Calculator is used along with the USEPA Region 4 Ecological Screening Values (R4-ESV) and Refined Screening Values (R4-RSV). RESULTS Based on GC-MS results, all samples had PAH-related hazard indices below 1, indicating low noncarcinogenic risks, but some samples exceeded screening levels for PAH-associated cancer risks. Combining biosensor-based C free with Total Organic Carbon yields predictions highly correlated (r > 0.5) both with total PAH concentrations as well as with hazard indices and cancer risks. Additionally, several individual parent PAH concentrations in both the GB/HSC and Elizabeth River sediments exceeded the R4- ESV and R4-RSV values, indicating a need for follow-up sediment studies. CONCLUSIONS The resulting data support the utility of the biosensor for future DR2 efforts to characterize PAH contamination, enabling preliminary PAH exposure risk screening to aid in prioritization of environmental sample analysis.
Collapse
Affiliation(s)
- Krisa Camargo
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA; Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Mary Ann Vogelbein
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA
| | - Jennifer A Horney
- Epidemiology Program, University of Delaware, Newark, DE, 19716, USA
| | - Timothy M Dellapenna
- Department of Marine and Coastal Environmental Science, Texas A&M University Galveston, Galveston, TX, 77554, USA
| | - Anthony H Knap
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA; Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Jose L Sericano
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA; Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Terry L Wade
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA; Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Thomas J McDonald
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA; School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences - Interdisciplinary Faculty of Toxicology (IFT), Texas A&M University, College Station, TX, 77843, USA
| | - Michael A Unger
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA.
| |
Collapse
|
4
|
Govindarajan A, Crum M, Adolacion J, Kiaghadi A, Acuña-Gonzalez E, Rifai HS, Willson RC. Sediment and their bacterial communities in an industrialized estuary after Hurricane Harvey. MARINE POLLUTION BULLETIN 2022; 175:113359. [PMID: 35124375 DOI: 10.1016/j.marpolbul.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.
Collapse
Affiliation(s)
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay Adolacion
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Mexico
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Edgar Acuña-Gonzalez
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
5
|
Kiaghadi A, Rifai HS, Crum M, Willson RC. Longitudinal patterns in sediment type and quality during daily flow regimes and following natural hazards in an urban estuary: a Hurricane Harvey retrospective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7514-7531. [PMID: 34476713 DOI: 10.1007/s11356-021-15912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Understanding the transport of sediments in urban estuaries and their effects on water quality and microorganisms is a convergent challenge that has yet to be addressed especially as a result of natural hazards that affect the hydrodynamics of estuarine systems. This study provides a holistic view of the longitudinal nature and character of sediment in an urban estuary, the Galveston Bay Estuary System (GBES), under daily and extreme flow regimes and presents the results of water and sediment sampling after Hurricane Harvey. The sediment sampling quantified total suspended sediment (TSS) concentrations, metal concentrations, and the diversity of microbial communities. The results revealed the impact of the substantial sediment loads that were transported into the GBES in terms of sediment grain type, the spatial distribution of trace metals, and the diversity of microbial communities. A measurable shift in the percentage of silt relative to historical norms was noted in the GBES after Hurricane Harvey. Not only did sediment metal data confirms this shift and its ensuing impact on metal concentrations; microbial data provided ample evidence of the effect of leaks and spills from wastewater treatment plants, superfund sites, and industrial runoff on microbial diversity. The research demonstrates the importance of understanding longitudinal sediment transport and deposition in estuarine systems under daily flow regimes but more critically, following natural hazard events to ensure sustainability and resilience of systems such as the GBES that encounter numerous acute and chronic stresses.
Collapse
Affiliation(s)
- Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Room N138, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4003, USA
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Room N138, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4003, USA.
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Room S222, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4004, USA
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Room S222, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4004, USA
| |
Collapse
|
6
|
Camargo KM, Foster M, Buckingham B, McDonald TJ, Chiu WA. Characterizing baseline legacy chemical contamination in urban estuaries for disaster-research through systematic evidence mapping: A case study. CHEMOSPHERE 2021; 281:130925. [PMID: 34289609 PMCID: PMC8298901 DOI: 10.1016/j.chemosphere.2021.130925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Natural disasters such as floods and hurricanes impact urbanized estuarine environments. Some impacts pose potential environmental and public health risks because of legacy or emerging chemical contamination. However, characterizing the baseline spatial and temporal distribution of environmental chemical contamination before disasters remains a challenge. To address this gap, we propose using systematic evidence mapping (SEM) in order to comprehensively integrate available data from diverse sources. We demonstrate this approach is useful for tracking and clarifying legacy chemical contamination reporting in an urban estuary system. We conducted a systematic search of peer-reviewed articles, government monitoring data, and grey literature. Inclusion/exclusion criteria are used as defined by a Condition, Context, Population (CoCoPop) statement for literature from 1990 to 2019. Most of the peer-reviewed articles reported dioxins/furans or mercury within the Houston Ship Channel (HSC); there was limited reporting of other organics and metals. In contrast, monitoring data from two agencies included 89-280 individual chemicals on a near-annual basis. Regionally, peer-reviewed articles tended to record metals in Lower Galveston Bay (GB) but organics in the HSC, while the agency databases spanned a wider spatial range in GB/HSC. This SEM has shown that chemical data from peer-reviewed and grey literature articles are sparse and inconsistent. Even with inclusion of government monitoring data, full spatial and temporal distributions of baseline levels of legacy chemicals are difficult to determine. There is thus a need to expand the chemical, spatial, and temporal coverage of sampling and environmental data reporting in GB/HSC.
Collapse
Affiliation(s)
- Krisa M Camargo
- Texas A&M University Veterinary Integrative Biosciences, 4458 TAMU, College Station, TX, 77843, USA; Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Margaret Foster
- Texas A&M University Libraries - Medical Sciences Library, College Station, TX, 77840, USA
| | - Brian Buckingham
- Texas A&M University Geochemical and Environmental Research Group, College Station, TX, 77845, USA
| | - Thomas J McDonald
- Texas A&M University Interdisciplinary Faculty of Toxicology (IFT), College Station, TX, 77843, USA; Texas A&M University School of Public Health, College Station, TX, 77843, USA
| | - Weihsueh A Chiu
- Texas A&M University Veterinary Integrative Biosciences, 4458 TAMU, College Station, TX, 77843, USA; Texas A&M University Interdisciplinary Faculty of Toxicology (IFT), College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Camargo K, Sericano JL, Bhandari S, Hoelscher C, McDonald TJ, Chiu WA, Wade TL, Dellapenna TM, Liu Y, Knap AH. Polycyclic aromatic hydrocarbon status in post-hurricane Harvey sediments: Considerations for environmental sampling in the Galveston Bay/Houston Ship Channel region. MARINE POLLUTION BULLETIN 2021; 162:111872. [PMID: 33256967 PMCID: PMC7867649 DOI: 10.1016/j.marpolbul.2020.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/14/2023]
Abstract
Hurricane Harvey led to a broad redistribution of sediment throughout Galveston Bay and the Houston Ship Channel (GB/HSC), but the resulting changes in chemical contaminant distributions have yet to be characterized. To address this question, we collected and analyzed post-Harvey sediment for concentrations of the EPA 16 Priority Pollutant polycyclic aromatic hydrocarbon (PAHs), determining the extent to which the spatial distribution and sourcing of contaminants may have changed in contrast to historical surface sediment data (<5 cm) from the National Oceanic Atmospheric Administration (NOAA) available for the years 1996-2011. We found a small, but detectable increase from pre- to post-Harvey in PAH concentrations, with PAH diagnostic sourcing indicating combustion origins. Of the detected PAHs, none exceeded Sediment Quality Guideline values. Overall, we have added to the understanding of PAH spatial trends within the GB/HSC region, and developed a reference PAH baseline to inform future studies.
Collapse
Affiliation(s)
- Krisa Camargo
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America; Texas A&M University, Department of Oceanography, College Station, TX, United States of America
| | - Jose L Sericano
- Texas A&M University, Department of Oceanography, College Station, TX, United States of America
| | - Sharmilla Bhandari
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America
| | - Christena Hoelscher
- Texas A&M University, Department of Oceanography, College Station, TX, United States of America; Texas A&M University, Department of Marine and Coastal Environmental Science, Galveston, TX 77554, United States of America
| | - Thomas J McDonald
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America; Texas A&M University, School of Public Health, College Station, TX 77843, United States of America
| | - Weihsueh A Chiu
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America.
| | - Terry L Wade
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America; Texas A&M University, Department of Oceanography, College Station, TX, United States of America
| | - Timothy M Dellapenna
- Texas A&M University, Department of Oceanography, College Station, TX, United States of America; Texas A&M University, Department of Marine and Coastal Environmental Science, Galveston, TX 77554, United States of America
| | - Yina Liu
- Texas A&M University, Department of Oceanography, College Station, TX, United States of America
| | - Anthony H Knap
- Texas A&M University, College of Veterinary Medicine Interdisciplinary, Faculty of Toxicology, College Station, TX 77843, United States of America; Texas A&M University, Department of Oceanography, College Station, TX, United States of America
| |
Collapse
|
8
|
Rowe GT, Fernando H, Elferink C, Ansari GAS, Sullivan J, Heathman T, Quigg A, Petronella Croisant S, Wade TL, Santschi PH. Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. PLoS One 2020; 15:e0243734. [PMID: 33370322 PMCID: PMC7769252 DOI: 10.1371/journal.pone.0243734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
The cycling and fate of polycyclic aromatic hydrocarbons (PAHs) is not well understood in estuarine systems. It is critical now more than ever given the increased ecosystem pressures on these critical coastal habitats. A budget of PAHs and cycling has been created for Galveston Bay (Texas) in the northwestern Gulf of Mexico, an estuary surrounded by 30-50% of the US capacity of oil refineries and chemical industry. We estimate that approximately 3 to 4 mt per year of pyrogenic PAHs are introduced to Galveston Bay via gaseous exchange from the atmosphere (ca. 2 mt/year) in addition to numerous spills of petrogenic PAHs from oil and gas operations (ca. 1.0 to 1.9 mt/year). PAHs are cycled through and stored in the biota, and ca. 20 to 30% of the total (0.8 to 1.5 mt per year) are estimated to be buried in the sediments. Oysters concentrate PAHs to levels above their surroundings (water and sediments) and contain substantially greater concentrations than other fish catch (shrimp, blue crabs and fin fish). Smaller organisms (infaunal invertebrates, phytoplankton and zooplankton) might also retain a significant fraction of the total, but direct evidence for this is lacking. The amount of PAHs delivered to humans in seafood, based on reported landings, is trivially small compared to the total inputs, sediment accumulation and other possible fates (metabolic remineralization, export in tides, etc.), which remain poorly known. The generally higher concentrations in biota from Galveston Bay compared to other coastal habitats can be attributed to both intermittent spills of gas and oil and the bay's close proximity to high production of pyrogenic PAHs within the urban industrial complex of the city of Houston as well as periodic flood events that transport PAHs from land surfaces to the Bay.
Collapse
Affiliation(s)
- Gilbert T. Rowe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas, United States of America
| | - Cornelis Elferink
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - G. A. Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John Sullivan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Heathman
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | | | - Terry L. Wade
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | - Peter H. Santschi
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
9
|
Dean RK, Schneider CR, Almnehlawi HS, Dawson KS, Fennell DE. 2,3,7,8-Tetrachlorodibenzo- p-dioxin Dechlorination is Differentially Enhanced by Dichlorobenzene Amendment in Passaic River, NJ Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8380-8389. [PMID: 32432863 DOI: 10.1021/acs.est.0c00876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are a class of toxic organic compounds released by a number of industrial processes. Sediments of the Passaic River in New Jersey are contaminated by these compounds. To explore the ability of native organohalide respiring bacteria to dechlorinate PCDDs, we first enriched bacteria from sediments of the Passaic River on two organohalides, trichloroethene (TCE) and 1,2-dichlorobenzene (DCB). We then used these enriched sediment cultures and original, unamended sediment as the inocula in a secondary experiment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TeCDD), 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD), and 2,7-dichlorodibenzo-p-dioxin (2,7-DiCDD) as target organohalides. We observed dechlorination of 1,2,3,4-TeCDD by all inocula, although to different extents. We observed progressive dechlorination of 2,3,7,8-TeCDD only in bottles inoculated with the DCB enrichment culture, and dechlorination of 2,7-DiCDD almost exclusively in bottles inoculated with the original, unamended river sediment. Dechlorination of 1,2,3,4-TeCDD was more rapid than that of the other amended congeners. Phylotypes within the class Dehalococcoidia associated with organohalide dechlorination were differentially enriched in DCB versus TCE enrichment cultures, indicating that they may play a role in dechlorination of the PCDDs.
Collapse
Affiliation(s)
- Rachel K Dean
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Cassidy R Schneider
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Haider S Almnehlawi
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
- College of Science, Al-Muthanna University, Samawah, AL-Muthanna 66001 Iraq
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
10
|
Dam HT, Sun W, McGuinness L, Kerkhof LJ, Häggblom MM. Identification of a Chlorodibenzo- p-dioxin Dechlorinating Dehalococcoides mccartyi by Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14409-14419. [PMID: 31765134 DOI: 10.1021/acs.est.9b05395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are released into the environment from a variety of both anthropogenic and natural sources. While highly chlorinated dibenzo-p-dioxins are persistent under oxic conditions, in anoxic environments, these organohalogens can be reductively dechlorinated to less chlorinated compounds that are then more amenable to subsequent aerobic degradation. Identifying the microorganisms responsible for dechlorination is an important step in developing bioremediation approaches. In this study, we demonstrated the use of a DNA-stable isotope probing (SIP) approach to identify the bacteria active in dechlorination of PCDDs in river sediments, with 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) as a model. In addition, pyrosequencing of reverse transcribed 16S rRNA of TeCDD dechlorinating enrichment cultures was used to reveal active members of the bacterial community. A set of operational taxonomic units (OTUs) responded positively to the addition of 1,2,3,4-TeCDD in SIP microcosms assimilating 13C-acetate as the carbon source. Analysis of bacterial community profiles of the 13C labeled heavy DNA fraction revealed that an OTU corresponding to Dehalococcoides mccartyi accounted for a significantly greater abundance in cultures amended with 1,2,3,4-TeCDD than in cultures without 1,2,3,4-TeCDD. This implies the involvement of this Dehalococcoides mccartyi strain in the reductive dechlorination of 1,2,3,4-TeCDD and suggests the applicability of SIP for a robust assessment of the bioremediation potential of organohalogen contaminated sites.
Collapse
Affiliation(s)
- Hang T Dam
- Department of Biochemistry and Microbiology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- Institute for Biological Interfaces 5 (IBG 5) , Karlsruhe Institute of Technology (KIT) , Eggenstein-Leopoldshafen 76344 , Germany
| | - Weimin Sun
- Department of Biochemistry and Microbiology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , China
| | - Lora McGuinness
- Department of Marine and Coastal Sciences, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
11
|
Bai N, Wang W, Zhao Y, Feng W, Li P. Theoretical Insights into the Reaction Mechanism between 2,3,7,8-Tetrachlorodibenzofuran and Hydrogen Peroxide: A DFT Study. ACS OMEGA 2019; 4:358-367. [PMID: 31459335 PMCID: PMC6648065 DOI: 10.1021/acsomega.8b00724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/19/2018] [Indexed: 06/10/2023]
Abstract
A detailed knowledge of the reactivity of 2,3,7,8-tetrachlorodibenzofuran (TCDF) at the molecular level is important to better understand the transformation of dioxins analogous to TCDF in the environment. To clarify the reactivity of the organic hydroperoxides toward TCDF, the reaction of the TCDF with hydrogen peroxide (H2O2) and its anion has been investigated theoretically. For the reaction of the neutral H2O2, a molecular complex can be formed between TCDF and H2O2 first. Then, the nucleophilic aromatic substitution of TCDF by H2O2 occurs in the presence of the water molecules to form an intermediate containing an O-O bond. Finally, the O-O bond cleavages homolytically for the above intermediate. On the other hand, as for the reaction of the anion of H2O2 (HO2 -), the nucleophilic addition of HO2 - to TCDF can also occur besides the nucleophilic aromatic substitution reaction mentioned above, resulting in the dissociation of the C-O bond of TCDF. Unlike the reaction involving neutral H2O2, no water molecules are required. In addition, the selected substitution effects, such as F-, Br-, and CH3-substituents, on the reactivity of the above reaction have also been explored. Hopefully, the present results can enable us to gain insights into the reactivity of the organic hydroperoxides with TCDF-like environmental pollutants.
Collapse
Affiliation(s)
- Nana Bai
- Key Laboratory of Life-Organic
Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, P. R. China
| | - Weihua Wang
- Key Laboratory of Life-Organic
Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, P. R. China
| | - Yun Zhao
- Key Laboratory of Life-Organic
Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, P. R. China
| | - Wenling Feng
- Key Laboratory of Life-Organic
Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, P. R. China
| | - Ping Li
- Key Laboratory of Life-Organic
Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, P. R. China
| |
Collapse
|
12
|
Santana-Santos MA, Ordaz A, Jan-Roblero J, Bastida González F, Zárate Segura PB, Guerrero-Barajas C. Tolerance of a sulfidogenic sludge to trichloroethylene at microcosms level as a basis for a long-term operation of reactors designed for its biodegradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:461-471. [PMID: 30676262 DOI: 10.1080/10934529.2019.1567157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Trichloroethylene (TCE) is known as a toxic organic compound found as a pollutant in water streams around the world. The ultimate goal of the present work was to determine the TCE concentration that would be feasible to biodegrade on a long-term basis by a sulfidogenic sludge while maintaining sulfate reducing activity (SRA). Microcosms were prepared with sulfidogenic sludge obtained from a stabilized sulfidogenic UASB and amended with different TCE concentrations (100-300 µM) and two different proportions of volatile fatty acids (VFA) acetate, propionate and butyrate at COD of 2.5:1:1 and 1:1:1, respectively to evaluate the tolerance of the sludge. The overall results suggested that the continuous exposure of the microorganisms to TCE leads to inhibition of SRA; nonetheless, the SRA can be recovered after adequate supplementation of carbon sources and sulfate. The most suitable TCE concentration to operate on a long-term basis while preserving SRA was 26-35 mg L-1 (200-260 µM). A low level of expression of the mRNA of the sulfite reductase subunit alpha (dsrA) gene was obtained in the presence of the TCE and its intermediate products. This gene was associated to SRB belonging to the genera Desulfovibrio, Desulfosalsimonas, Desulfotomaculum, Desulfococcus, Desulfatiglans and Desulfomonas.
Collapse
Affiliation(s)
- Mario Alberto Santana-Santos
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| | - Alberto Ordaz
- b Escuela de Ingeniería y Ciencias , Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México, Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , Mexico
| | - Janet Jan-Roblero
- c Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás , Mexico City , Mexico
| | - Fernando Bastida González
- d Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México. Paseo Tollocan s/n, Col. La Moderna de la Cruz , Estado de México , Toluca , Mexico
| | - Paola B Zárate Segura
- e Laboratorio de Medicina Traslacional , Escuela Superior de Medicina. Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas , Mexico City , Mexico
| | - Claudia Guerrero-Barajas
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| |
Collapse
|
13
|
Wang W, Feng W, Wang W, Li P. Theoretical Investigations on the Reactivity of Methylidyne Radical toward 2,3,7,8-Tetrachlorodibenzo- p-Dioxin: A DFT and Molecular Dynamics Study. Molecules 2018; 23:E2685. [PMID: 30340385 PMCID: PMC6222546 DOI: 10.3390/molecules23102685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
To explore the potential reactivity of the methylidyne radical (CH) toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the reaction mechanism between them has been systematically investigated employing the density functional theory (DFT) and ab initio molecular dynamics simulations. The relevant thermodynamic and kinetic parameters in the possible reaction pathways have been discussed as well as the IR spectra and hyperfine coupling constants (hfcc's) of the major products. Different from the reaction of the CH radical with 2,3,7,8-tetrachlorodibenzofuran, CH radical can attack all the C-C bonds of TCDD to form an initial intermediate barrierlessly via the cycloaddition mechanism. After then, the introduced C-H bond can be further inserted into the C-C bond of TCDD, resulting in the formation of a seven-membered ring structure. The whole reactions are favorable thermodynamically and kinetically. Moreover, the major products have been verified by ab initio molecular dynamics simulations. The distinct IR spectra and hyperfine coupling constants of the major products can provide some help for their experimental detection and identification. In addition, the reactivity of the CH radical toward the F- and Br-substituted TCDDs has also been investigated. Hopefully, the present findings can provide new insights into the reactivity of the CH radical in the transformation of TCDD-like dioxins.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Wenling Feng
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Wenliang Wang
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
14
|
Louchouarn P, Seward SM, Cornelissen G, Arp HPH, Yeager KM, Brinkmeyer R, Santschi PH. Limited mobility of dioxins near San Jacinto super fund site (waste pit) in the Houston Ship Channel, Texas due to strong sediment sorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:988-998. [PMID: 29475727 DOI: 10.1016/j.envpol.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 05/14/2023]
Abstract
Sediments from a waste pit in Houston Ship Channel (HSC) were characterized using a number of molecular markers of natural organic matter fractions (e.g., pyrogenic carbon residues, PAHs, lignins), in addition to dioxins, in order to test the hypothesis that the dispersal and mobility of dioxins from the waste pit in the San Jacinto River is minimal. Station SG-6, sampled at the site of the submerged waste pit, had the highest dioxin/furan concentrations reported for the Houston Ship Channel/Galveston Bay (HSC/GB) system (10,000-46,000 pg/g), which translated into some of the highest reported World Health Organization Toxic Equivalents (TEQs: 2000-11,000 pg/g) in HSC sediments. Using a multi-tracer approach, this study confirmed our hypothesis that sludges from chlorinated pulps are a very likely source of dioxins/furans to this pit. However, this material also contained large quantities of additional hydrophobic organic contaminants (PAHs) and pyrogenic markers (soot-BC, levoglucosan), pointing to the co-occurrence of petroleum hydrocarbons and combustion byproducts. Comparison of dioxin/furan signatures in the waste pit with those from sediments of the HSC and a control site suggests that the remobilization of contaminated particles did not occur beyond the close vicinity of the pit itself. The dioxins/furans in sediments outside the waste pit within the HSC are rather from other diffuse inputs, entering the sedimentary environment through the air and water, and which are comprised of a mixture of industrial and municipal sources. Fingerprinting of waste pit dioxins indicates that their composition is typical of pulp and paper sources. Measured pore water concentrations were 1 order of magnitude lower than estimated values, calculated from a multiphase sorption model, indicating low mobility of dioxins within the waste pit. This is likely accomplished by co-occurring and strong sorbing pyrogenic and petrogenic residues in the waste pit, which tend to keep dioxins strongly sorbed to particles.
Collapse
Affiliation(s)
- Patrick Louchouarn
- Dept. of Marine Sciences, Texas A&M University - Galveston, TX 77554, USA; Dept. of Oceanography, Texas A&M University, USA
| | | | - Gerard Cornelissen
- Dept. of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadium, 0806 Oslo, Norway; Faculty of Environmental Science and Natural Resources (MINA), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway
| | - Hans Peter H Arp
- Dept. of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadium, 0806 Oslo, Norway; Dept. of Environmental Science and Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kevin M Yeager
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Robin Brinkmeyer
- Dept. of Marine Sciences, Texas A&M University - Galveston, TX 77554, USA
| | - Peter H Santschi
- Dept. of Marine Sciences, Texas A&M University - Galveston, TX 77554, USA; Dept. of Oceanography, Texas A&M University, USA.
| |
Collapse
|
15
|
Wei W, Wang W, Xu K, Feng W, Li X, Li P. Theoretical insights into the reaction mechanisms between 2,3,7,8-tetrachlorodibenzofuran and the methylidyne radical. RSC Adv 2018; 8:21150-21163. [PMID: 35539902 PMCID: PMC9080895 DOI: 10.1039/c8ra03046d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 11/21/2022] Open
Abstract
To explore the potential role of the methylidyne radical (CH) in the transformation of 2,3,7,8-tetrachlorodibenzofuran (TCDF), in this study, the detailed reaction mechanisms between TCDF and CH radical have been systematically investigated employing the B3LYP method of density functional theory (DFT) in combination with the atoms in molecules (AIM) theory and ab initio molecular dynamics. It was found that the title reaction is a multi-channel reaction, i.e., the CH radical can attack the C-X (X = C, Cl, H, O) bonds of TCDF via the insertion modes, resulting in the formation of 13 products. Thermodynamically, the whole reaction processes are exothermic and spontaneous since all the enthalpy and Gibbs free energy changes are negative values in the formation processes. Moreover, the thermodynamic stability of the products is controlled by the distribution of the single unpaired electron. Kinetically, the most favorable reaction channel is the insertion of the CH radical into the C-C bond except for the C atoms attached to the chlorine atom. Moreover, the dominant products have been further confirmed by the molecular dynamics. Meanwhile, the IR spectra and hyperfine coupling constants of the dominant products have been investigated to provide helpful information for their identification experimentally. In addition, the reactivity of the CH radical toward the F- and Br-substituted TCDFs has also been investigated. Expectedly, the present findings can enable us to better understand the reactivity of the CH radical toward organic pollutants analogous to TCDF in the atmosphere.
Collapse
Affiliation(s)
- Wenjing Wei
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Weihua Wang
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Kaining Xu
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Wenling Feng
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Xiaoping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 P. R. China
| |
Collapse
|
16
|
Rodenburg LA, Dewani Y, Häggblom MM, Kerkhof LJ, Fennell DE. Forensic Analysis of Polychlorinated Dibenzo-p-Dioxin and Furan Fingerprints to Elucidate Dechlorination Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10485-10493. [PMID: 28796943 DOI: 10.1021/acs.est.7b02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are persistent organic pollutants whose main removal process in the environment is due to biodegradation, and particularly anaerobic reductive dechlorination. Since PCDD/F congeners that are substituted in the lateral 2, 3, 7, and 8 positions are the most toxic, removal of these chlorines is advantageous, but previous studies have only demonstrated their removal under laboratory conditions. We evaluated a concentration data set of PCDD/F congeners with four or more chlorines along with all 209 polychlorinated biphenyl (PCB) congeners in surface water, treated and untreated wastewater, landfill leachate, and biosolids (NY CARP data set) to determine whether peri and peri/lateral dechlorination of PCDD/Fs occurs in these environments. Positive Matrix Factorization (PMF) applied to the data set revealed a factor indicative of the microbial dechlorination of PCBs, and this factor also contained a variety of non-2,3,7,8 substituted PCDD/F congeners. These results suggest that dechlorination of PCDD/Fs at the lateral positions is facile if not preferred in these environments. The relative lack of tetra- and penta-chlorinated PCDD/Fs suggested that dechlorination proceeds to PCDD/F congeners with less than four chlorines. The PMF results were confirmed by examining three samples that contained >90% PCB dechlorination products from the Fresh Kills Landfill and the Hudson River. Even without factor analysis, these samples demonstrated almost identical PCDD/F congener patterns. This study suggests that PCDD/Fs are reductively dechlorinated to nontoxic non-2,3,7,8 PCDD/F congeners in sewers and landfills as well as in the sediment of the Upper Hudson River.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Yashika Dewani
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University , 76 Lipman Drive, New Brunswick, New Jersey 08901, United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University , 71 Dudley Rd, New Brunswick, New Jersey 08901, United States
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|