1
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2025; 29:1737-1760. [PMID: 38833124 PMCID: PMC11909063 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Jiang W, Luan T, Cao P, Ma Z, Su Z. New Brusatol Derivatives as Anti-Settlement Agents Against Barnacles, Targeting HSP90: Design, Synthesis, Biological Evaluation, and Molecular Docking Investigations. Int J Mol Sci 2025; 26:593. [PMID: 39859311 PMCID: PMC11765156 DOI: 10.3390/ijms26020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity. Compound 3 exhibited the highest anti-settlement capacity, with an EC50 value of 0.1475 μg/mL, an LC50/EC50 ratio of 42.2922 (>15 indicating low toxicity), and a resuscitation rate of 71.11%, while it showed no significant phenotypic differences in the zebrafish embryos after treatment for 48 h. The toxicity screening of zebrafish also demonstrated the low ecotoxicity of the selected compounds. Furthermore, homology modeling of the HSP90 structure was performed based on related protein sequences in barnacles. Subsequently, molecular docking studies were conducted on HSP90 using these newly synthesized derivatives. Molecular docking analyses showed that most activated derivatives displayed low binding energies with HSP90, aligning well with the biological results. They were found to interact with key residues in the binding site, specifically ARG243, TYR101, and LEU73. These computational findings are anticipated to aid in predicting the enzyme targets of the tested inhibitors and their potential interactions, thus facilitating the design of novel antifoulants in future research endeavors.
Collapse
Affiliation(s)
- Wang Jiang
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Tongtong Luan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Pei Cao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Zhonghui Ma
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
| | - Zhiwei Su
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| |
Collapse
|
3
|
Neves AR, Godinho S, Gonçalves C, Gomes AS, Almeida JR, Pinto M, Sousa E, Correia-da-Silva M. A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds. Mar Drugs 2024; 22:416. [PMID: 39330297 PMCID: PMC11433177 DOI: 10.3390/md22090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Sara Godinho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Catarina Gonçalves
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Sara Gomes
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Cahill PL, Moodie LWK, Hertzer C, Pinori E, Pavia H, Hellio C, Brimble MA, Svenson J. Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry. Acc Chem Res 2024; 57:399-412. [PMID: 38277792 DOI: 10.1021/acs.accounts.3c00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.
Collapse
Affiliation(s)
- Patrick L Cahill
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Lindon W K Moodie
- Drug Design and Discovery, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Cora Hertzer
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Emiliano Pinori
- RISE Research Institutes of Sweden, Division for Material and Production, 504 62 Borås, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
5
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Takamura H, Kinoshita Y, Yorisue T, Kadota I. Chemical synthesis and antifouling activity of monoterpene-furan hybrid molecules. Org Biomol Chem 2023; 21:632-638. [PMID: 36562351 DOI: 10.1039/d2ob02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Geraniol, a monoterpene, and furan are structural motifs that exhibit antifouling activity. In this study, monoterpene-furan hybrid molecules with potentially enhanced antifouling activity were designed and synthesized. The nine synthetic hybrids showed antifouling activity against the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC50 values of 1.65-4.70 μg mL-1. This activity is higher than that of geraniol and the reference furan compound. This hybridization approach to increase antifouling activity is useful and can also be extended to other active structural units.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuya Kinoshita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, 6 Yayoigaoka, Sanda 669-1546, Japan.,Division of Nature and Environmental Management, Museum of Nature and Human Activities, 6 Yayoigaoka, Sanda 669-1546, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
8
|
Quémener M, Kikionis S, Fauchon M, Toueix Y, Aulanier F, Makris AM, Roussis V, Ioannou E, Hellio C. Antifouling Activity of Halogenated Compounds Derived from the Red Alga Sphaerococcus coronopifolius: Potential for the Development of Environmentally Friendly Solutions. Mar Drugs 2021; 20:md20010032. [PMID: 35049887 PMCID: PMC8778584 DOI: 10.3390/md20010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.
Collapse
Affiliation(s)
- Maxence Quémener
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Marilyne Fauchon
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Yannick Toueix
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Fanny Aulanier
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Antonios M. Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 570 01 Thessaloniki, Greece;
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
- Correspondence: (E.I.); (C.H.)
| | - Claire Hellio
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
- Correspondence: (E.I.); (C.H.)
| |
Collapse
|
9
|
Labriere C, Cervin G, Pavia H, Hansen JH, Svenson J. Structure-Activity Relationship Probing of the Natural Marine Antifoulant Barettin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:904-916. [PMID: 34727298 DOI: 10.1007/s10126-021-10074-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The sponge derived 2,5-diketopiperazine metabolite barettin is a potent antifouling compound effective against the settlement and metamorphosis of barnacles. Simplified derivatives of barettin have previously been shown to display similar inhibitory properties. The synthetic derivative benzo[g]dipodazine has been reported to display significantly improved antifouling properties in comparison with the native barettin with inhibitory activities as low a 0.034 µM reported against barnacle cyprid settlement. In the current study we report the antifouling activity of 29 synthetic analogs designed and inspired by the potent antifouling effect seen for benzo[g]dipodazine. The library contains mainly not only dipodazine derivatives but also disubstituted diketopiperazines and compounds incorporating alternative heterocyclic cores such as hydantoin, creatinine, and rhodanine. Several of the prepared compounds inhibit the settlement of Amphibalanus improvisus cyprids at low micromolar concentrations, in parity with the natural barettin. While several highly active compounds were prepared by incorporating the benzo[g]indole as hydrophobic substituent, the remarkable antifouling effect reported for benzo[g]dipodazine was not observed when evaluated in our study.
Collapse
Affiliation(s)
- Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Gunnar Cervin
- Department of Marine Sciences - Tjärnö, University of Gothenburg, 452 96, Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, 452 96, Strömstad, Sweden
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
| |
Collapse
|
10
|
Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Mar Drugs 2021; 19:md19120682. [PMID: 34940681 PMCID: PMC8704891 DOI: 10.3390/md19120682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone–triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition “click” reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.
Collapse
|
11
|
Herzberg M, Berglin M, Eliahu S, Bodin L, Agrenius K, Zlotkin A, Svenson J. Efficient Prevention of Marine Biofilm Formation Employing a Surface-Grafted Repellent Marine Peptide. ACS APPLIED BIO MATERIALS 2021; 4:3360-3373. [PMID: 35014421 DOI: 10.1021/acsabm.0c01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Creation of surfaces resistant to the formation of microbial biofilms via biomimicry has been heralded as a promising strategy to protect a range of different materials ranging from boat hulls to medical devices and surgical instruments. In our current study, we describe the successful transfer of a highly effective natural marine biofilm inhibitor to the 2D surface format. A series of cyclic peptides inspired by the natural equinatoxin II protein produced by Beadlet anemone (Actinia equine) have been evaluated for their ability to inhibit the formation of a mixed marine microbial consortium on polyamide reverse osmosis membranes. In solution, the peptides are shown to effectively inhibit settlement and biofilm formation in a nontoxic manner down to 1 nM concentrations. In addition, our study also illustrates how the peptides can be applied to disperse already established biofilms. Attachment of a hydrophobic palmitic acid tail generates a peptide suited for strong noncovalent surface interactions and allows the generation of stable noncovalent coatings. These adsorbed peptides remain attached to the surface at significant shear stress and also remain active, effectively preventing the biofilm formation over 24 h. Finally, the covalent attachment of the peptides to an acrylate surface was also evaluated and the prepared coatings display a remarkable ability to prevent surface colonization at surface loadings of 55 ng/cm2 over 48 h. The ability to retain the nontoxic antibiofilm activity, documented in solution, in the covalent 2D-format is unprecedented, and this natural peptide motif displays high potential in several material application areas.
Collapse
Affiliation(s)
- Moshe Herzberg
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Mattias Berglin
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden.,Chemistry and Molecular Biology, Gothenburg University, Gothenburg SE405 30, Sweden
| | - Sarai Eliahu
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Lovisa Bodin
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| | - Karin Agrenius
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| | - Amir Zlotkin
- DisperseBio Ltd, 27 Kehilat lvov Street, Tel-Aviv 6972513, Israel
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås 501 15, Sweden
| |
Collapse
|
12
|
Labriere C, Elumalai V, Staffansson J, Cervin G, Le Norcy T, Denardou H, Réhel K, Moodie LWK, Hellio C, Pavia H, Hansen JH, Svenson J. Phidianidine A and Synthetic Analogues as Naturally Inspired Marine Antifoulants. JOURNAL OF NATURAL PRODUCTS 2020; 83:3413-3423. [PMID: 33054188 DOI: 10.1021/acs.jnatprod.0c00881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stationary and slow-moving marine organisms regularly employ a natural product chemical defense to prevent being colonized by marine micro- and macroorganisms. While these natural antifoulants can be structurally diverse, they often display highly conserved chemistries and physicochemical properties, suggesting a natural marine antifouling pharmacophore. In our current report, we investigate the marine natural product phidianidine A, which displays several chemical properties found in highly potent marine antifoulants. Phidianidine A and synthetic analogues were screened against the settlement and metamorphosis of Amphibalanus improvisus cyprids, and several of the compounds displayed inhibitory activities at low micromolar concentrations with IC50 values down to 0.7 μg/mL observed. The settlement study highlights that phidianidine A is a potent natural antifoulant and that the scaffold can be tuned to generate simpler and improved synthetic analogues. The bioactivity is closely linked to the size of the compound and to its basicity. The study also illustrates that active analogues can be prepared in the absence of the natural constrained 1,2,4-oxadiazole ring. A synthetic lead analogue of phidianidine A was incorporated in a coating and included in antifouling field trials, where it was shown that the coating induced potent inhibition of marine bacteria and microalgae settlement.
Collapse
Affiliation(s)
- Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Vijayaragavan Elumalai
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jannie Staffansson
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Tiffany Le Norcy
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Hugo Denardou
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Karine Réhel
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Lindon W K Moodie
- Department of Medicinal Chemistry and Uppsala Antibiotic Centre, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Box 857, 501 15 Borås, Sweden
| |
Collapse
|
13
|
Marine Biofouling: A European Database for the Marine Renewable Energy Sector. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070495] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofouling is a major problem shared among all maritime sectors employing submerged structures where it leads to substantially increased costs and lowered operational lifespans if poorly addressed. Insight into the ongoing processes at the relevant marine locations is key to effective management of biofouling. Of specific concern for the marine renewable energy (MRE) sector is the fact that information on biofouling composition and magnitude across geographies is dispersed throughout published papers and consulting reports. To enable rapid access to relevant key biofouling events the present work describes a European biofouling database to support the MRE sector and other maritime industries. The database compiles in one document qualitative and quantitative data for challenging biofouling groups, including non-native species associated with MRE and related marine equipment, in different European Ecoregions. It provides information on the occurrence of fouling species and data on key biofouling parameters, such as biofouling thickness and weight. The database aims to aid the MRE sector and offshore industries in understanding which biofouling communities their devices are more susceptible to at a given site, to facilitate informed decisions. In addition, the biofouling mapping is useful for the development of biosecurity risk management plans as well as academic research.
Collapse
|
14
|
Almeida JR, Moreira J, Pereira D, Pereira S, Antunes J, Palmeira A, Vasconcelos V, Pinto M, Correia-da-Silva M, Cidade H. Potential of synthetic chalcone derivatives to prevent marine biofouling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:98-106. [PMID: 29936172 DOI: 10.1016/j.scitotenv.2018.06.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Biofouling represents a major economic, environmental and health concern for which new eco-friendly solutions are needed. International legislation has restricted the use of biocidal-based antifouling coatings, and increasing efforts have been applied in the search for environmentally friendly antifouling agents. This research work deals with the assessment of the interest of a series of synthetic chalcone derivatives for antifouling applications. Sixteen chalcone derivatives were synthesized with moderate yields (38-85%). Antifouling bioactivity of these compounds was assessed at different levels of biological organization using both anti-macrofouling and anti-microfouling bioassays, namely an anti-settlement assay using mussel (Mytilus galloprovincialis) larvae, as well as marine bacteria and microalgal biofilms growth inhibition bioassays. Results showed that three compounds (11, 12, and 16) were particularly active against the settlement of mussel larvae (EC50 7.24-34.63 μM), being compounds 12 and 16 also able to inhibit the growth of microfouling species (EC50 4.09-20.31 μM). Moreover, the most potent compounds 12 and 16 were found to be non-toxic to the non-target species Artemia salina (<10% mortality at 25 μM). A quantitative structure-activity relationship model predicted that descriptors describing the ability of molecules to form hydrogen bonds and encoding the shape, branching ratio and constitutional diversity of the molecule were implied in the antifouling activity against the settlement of mussel larvae. This work elucidates for the first time the relevance of synthesizing chalcone derivatives to generate new non-toxic products to prevent marine biofouling.
Collapse
Affiliation(s)
- J R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - D Pereira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - A Palmeira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - V Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - M Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M Correia-da-Silva
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - H Cidade
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Feng DQ, He J, Chen SY, Su P, Ke CH, Wang W. The Plant Alkaloid Camptothecin as a Novel Antifouling Compound for Marine Paints: Laboratory Bioassays and Field Trials. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:623-638. [PMID: 29860659 DOI: 10.1007/s10126-018-9834-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The extensive use of copper and booster biocides in antifouling (AF) paints has raised environmental concerns and the need to develop new AF agents. In the present study, 18 alkaloids derived from terrestrial plants were initially evaluated for AF activity using laboratory bioassays with the bryozoan Bugula neritina and the barnacle Balanus albicostatus. The results showed that 4 of the 18 alkaloids were effective in inhibiting larval settlement of B. neritina, with an EC50 range of 6.18 to 43.11 μM, and 15 of the 18 alkaloids inhibited larval settlement of B. albicostatus, with EC50 values ranging from 1.18 to 67.58 μM. Field trials that incorporated five alkaloids respectively into paints with 20% w/w indicated an in situ AF efficiency of evodiamine, strychnine, camptothecin (CPT), and cepharanthine, with the most potent compound being CPT, which also exhibited stronger AF efficiency than the commercial antifoulants cuprous oxide and zinc pyrithione in the field over a period of 12 months. Further field trials with different CPT concentrations (0.1 to 20% w/w) in the paints suggested a concentration-dependent AF performance in the natural environment, and the effective concentrations to significantly inhibit settlement of biofoulers in the field were ≥ 0.5% w/w (the efficiency of 0.5% w/w lasted for 2 months). Moreover, CPT toxicity against the crustacean Artemia salina, the planktonic microalgae Phaeodactylum tricornutum and Isochrysis galbana, was examined. The results showed that 24 h LC50 of CPT against A. salina was 20.75 μM, and 96 h EC50 (growth inhibition) values of CPT to P. tricornutum and I. galbana were 55.81 and 6.29 μM, respectively, indicating that CPT was comparatively less toxic than several commercial antifoulants previously reported. Our results suggest the novel potential application of CPT as an antifoulant.
Collapse
Affiliation(s)
- Dan Qing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Jian He
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Si Yu Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Cai Huan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wei Wang
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361102, People's Republic of China
| |
Collapse
|