1
|
Hu J, Zheng Y, Yang S, Yang L, You Q, Wang Q. Transcriptomic analysis reveals the mechanism underlying salinity-induced morphological changes in Skeletonema subsalsum. Front Microbiol 2024; 15:1476738. [PMID: 39534502 PMCID: PMC11554505 DOI: 10.3389/fmicb.2024.1476738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Diatom cell walls are diverse and unique, providing the basis for species identification and supporting the ecological and economic value of diatoms. However, these important structures sometimes change in response to environmental fluctuations, especially under salt adaptation. Although studies have shown that salinity induces morphological plasticity changes in diatom cell walls, most research has focused on physiological responses rather than molecular mechanisms. In this study, Skeletonema subsalsum was cultured under four salinity conditions (0, 3, 6, 12). Through morphological and physiological methods, we found that salinity increased the cell diameter, protrusion lengths, distance between adjacent cells (DBCs), and nanopore size, while reducing cell height and silicification degree. To further investigate the mechanism underlying morphological changes in S. subsalsum, complementary transcriptome analysis was performed. In total, 20,138 differentially expressed genes (DEGs) were identified among the four treatments. Among them, 231 DEGs were screened and found to be closely associated with morphological changes, of which 107 were downregulated and 124 were upregulated. The findings demonstrated that elevated salinity inhibited silicon transport and deposition via downregulating the expression of DEGs involved in functions including chitin metabolism, putrescine metabolism, and vesicle transport, resulting in reduced silicon content and cell height. Increased salinity promoted the expression of DEGs related to microtubules (MTs), actin, and ubiquitin, which synchronously induced morphological changes. These findings provide a more comprehensive understanding of the salt tolerance of algae and a foundation for future studies on cell wall morphogenesis.
Collapse
Affiliation(s)
- Jingwen Hu
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ya Zheng
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuang Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Laboratory of Environmental Ecology and Engineering, College of Life Sciences, Hengshui University, Hengshui, China
| | - Qingmin You
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
Li Y, He J, Zhang X, Deng X. The draft genome of Nitzschia closterium f. minutissima and transcriptome analysis reveals novel insights into diatom biosilicification. BMC Genomics 2024; 25:560. [PMID: 38840265 PMCID: PMC11151724 DOI: 10.1186/s12864-024-10479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.
Collapse
Affiliation(s)
- Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| | - Jinman He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiuxia Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiaodong Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| |
Collapse
|
3
|
Sun X, Zhang M, Liu J, Hui G, Chen X, Feng C. The Art of Exploring Diatom Biosilica Biomaterials: From Biofabrication Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304695. [PMID: 38044309 PMCID: PMC10853744 DOI: 10.1002/advs.202304695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Indexed: 12/05/2023]
Abstract
Diatom is a common single-cell microalgae with large species and huge biomass. Diatom biosilica (DB), the shell of diatom, is a natural inorganic material with a micro-nanoporous structure. Its unique hierarchical porous structure gives it great application potential in drug delivery, hemostat materials, and biosensors, etc. However, the structural diversity of DB determines its different biological functions. Screening hundreds of thousands of diatom species for structural features of DB that meet application requirements is like looking for a needle in a seaway. And the chemical modification methods lack effective means to control the micro-nanoporous structure of DB. The formation of DB is a typical biomineralization process, and its structural characteristics are affected by external environmental conditions, genes, and other factors. This allows to manipulate the micro-nanostructure of DB through biological regulation method, thereby transforming the screening mode of the structure function of DB from a needle in a seaway to biofabrication mode. This review focuses on the formation, biological modification, functional activity of DB structure, and its application in biomaterials field, providing regulatory strategies and research idea of DB from the perspective of biofabrication. It will also maximize the possibility of using DB as biological materials.
Collapse
Affiliation(s)
- Xiaojie Sun
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
| | - Mengxue Zhang
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
| | - Jinfeng Liu
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Department of StomatologyQingdao Women and Children’s Hospital, QingdaoQingdao266034China
| | - Guangyan Hui
- Department of StomatologyQingdao Special Servicemen Recuperation Center of PLA NavyNo.18 Yueyang RoadQingdaoShandong Province266071China
| | - Xiguang Chen
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Sanya Oceanographic Institute, Ocean University of ChinaYazhou Bay Science & Technology CityFloor 7, Building 1, Yonyou Industrial ParkSanyaHainan Province572024P. R. China
- Laoshan Laboratory1# Wenhai RoadQingdaoShandong Province266000China
| | - Chao Feng
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Sanya Oceanographic Institute, Ocean University of ChinaYazhou Bay Science & Technology CityFloor 7, Building 1, Yonyou Industrial ParkSanyaHainan Province572024P. R. China
| |
Collapse
|
4
|
Okada K, Morimoto Y, Shiraishi Y, Tamura T, Mayama S, Kadono T, Adachi M, Ifuku K, Nemoto M. Nuclear Transformation of the Marine Pennate Diatom Nitzschia sp. Strain NIES-4635 by Multi-Pulse Electroporation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1208-1219. [PMID: 38071657 DOI: 10.1007/s10126-023-10273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Nitzschia is one of the largest genera of diatoms found in a range of aquatic environments, from freshwater to seawater. This genus contains evolutionarily and ecologically unique species, such as those that have lost photosynthetic capacity or those that live symbiotically in dinoflagellates. Several Nitzschia species have been used as indicators of water pollution. Recently, Nitzschia species have attracted considerable attention in the field of biotechnology. In this study, a transformation method for the marine pennate diatom Nitzschia sp. strain NIES-4635, isolated from the coastal Seto Inland Sea, was established. Plasmids containing the promoter/terminator of the fucoxanthin chlorophyll a/c binding protein gene (fcp, or Lhcf) derived from Nitzschia palea were constructed and introduced into cells by multi-pulse electroporation, resulting in 500 μg/mL nourseothricin-resistant transformants with transformation frequencies of up to 365 colonies per 108 cells. In addition, when transformation was performed using a new plasmid containing a promoter derived from a diatom-infecting virus upstream of the green fluorescent protein gene (gfp), 44% of the nourseothricin-resistant clones exhibited GFP fluorescence. The integration of the genes introduced into the genomes of the transformants was confirmed by Southern blotting. The Nitzschia transformation method established in this study will enable the transformation this species, thus allowing the functional analysis of genes from the genus Nitzschia, which are important species for environmental and biotechnological development.
Collapse
Affiliation(s)
- Koki Okada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yu Morimoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yukine Shiraishi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shigeki Mayama
- The Advanced Support Center for Science Teachers, Tokyo Gakugei University, Tokyo, 184-8511, Japan
- Tokyo Diatomology Lab, 2-3-2 Nukuikitamachi, Koganei, Tokyo, 184-0015, Japan
| | - Takashi Kadono
- Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Michiko Nemoto
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Bilcke G, Osuna-Cruz CM, Santana Silva M, Poulsen N, D'hondt S, Bulankova P, Vyverman W, De Veylder L, Vandepoele K. Diurnal transcript profiling of the diatom Seminavis robusta reveals adaptations to a benthic lifestyle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:315-336. [PMID: 33901335 DOI: 10.1111/tpj.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Coastal regions contribute an estimated 20% of annual gross primary production in the oceans, despite occupying only 0.03% of their surface area. Diatoms frequently dominate coastal sediments, where they experience large variations in light regime resulting from the interplay of diurnal and tidal cycles. Here, we report on an extensive diurnal transcript profiling experiment of the motile benthic diatom Seminavis robusta. Nearly 90% (23 328) of expressed protein-coding genes and 66.9% (1124) of expressed long intergenic non-coding RNAs showed significant expression oscillations and are predominantly phasing at night with a periodicity of 24 h. Phylostratigraphic analysis found that rhythmic genes are enriched in highly conserved genes, while diatom-specific genes are predominantly associated with midnight expression. Integration of genetic and physiological cell cycle markers with silica depletion data revealed potential new silica cell wall-associated gene families specific to diatoms. Additionally, we observed 1752 genes with a remarkable semidiurnal (12-h) periodicity, while the expansion of putative circadian transcription factors may reflect adaptations to cope with highly unpredictable external conditions. Taken together, our results provide new insights into the adaptations of diatoms to the benthic environment and serve as a valuable resource for the study of diurnal regulation in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| | - Marta Santana Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, Dresden, 01307, Germany
| | - Sofie D'hondt
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
6
|
Bhattacharjya R, Tiwari A, Marella TK, Bansal H, Srivastava S. New paradigm in diatom omics and genetic manipulation. BIORESOURCE TECHNOLOGY 2021; 325:124708. [PMID: 33487514 DOI: 10.1016/j.biortech.2021.124708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are one of the most heterogeneous eukaryotic plankton known for regulating earth's biogeochemical cycles and maintaining the marine ecosystems ever since the late Eocene epoch. The advent of multidisciplinary omics approach has both epitomized and revolutionized the nature of their chimeric genetic toolkit, ecophysiology, and metabolic adaptability as well as their interaction with other communities. In addition, advanced functional annotation of transcriptomic and proteomic data using cutting edge bioinformatics tools together with high-resolution genome-scale mathematical modeling has effectively proven as the catapult in solving genetic bottlenecks in microbial as well as diatom exploration. In this review, a corroborative summation of the robust work done in manipulating, engineering, and sequencing of the diatom genomes besides underpinning the holistic application of omics in transcription and translation has been discussed in order to shrewd their multifarious novel potential in the field of biotechnology and provide an insight into their dynamic evolutionary relevance.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| | - Thomas Kiran Marella
- Algae Biomass Energy System Development Research Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | | |
Collapse
|