1
|
Gerszberg A, Kolek L, Hnatuszko-Konka K. In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. Int J Mol Sci 2025; 26:3890. [PMID: 40332780 PMCID: PMC12028317 DOI: 10.3390/ijms26083890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Microalgae represent a promising platform for the synthesis of recombinant proteins, particularly in the context of biopharmaceutical applications. Their unique combination of eukaryotic cellular machinery and prokaryotic-like simplicity offers several advantages, including the ability to perform complex post-translational modifications, rapid growth rates, and cost-effective culture conditions. Advances in genome sequencing, genetic engineering tools, and omics technologies have significantly enhanced the feasibility and efficiency of using microalgae for therapeutic protein production. These advancements, coupled with the development of well-established transformation methods and optimized vectors, have enabled the successful expression of various biopharmaceuticals, ranging from vaccines to enzymes. Here, the main stages and current status of the production of exogenic recombinant proteins dedicated to human therapy are presented.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ludmiła Kolek
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Science, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Suhaimi N, Kumakubo R, Yoshino T, Maeda Y, Murata S, Tanaka T. Expansion of omega-3 polyunsaturated fatty acid metabolism of the oleaginous diatom Fistulifera solaris by genetic engineering. J Biosci Bioeng 2024; 138:105-110. [PMID: 38825559 DOI: 10.1016/j.jbiosc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.
Collapse
Affiliation(s)
- Noraiza Suhaimi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Ryota Kumakubo
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Okada K, Morimoto Y, Shiraishi Y, Tamura T, Mayama S, Kadono T, Adachi M, Ifuku K, Nemoto M. Nuclear Transformation of the Marine Pennate Diatom Nitzschia sp. Strain NIES-4635 by Multi-Pulse Electroporation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1208-1219. [PMID: 38071657 DOI: 10.1007/s10126-023-10273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Nitzschia is one of the largest genera of diatoms found in a range of aquatic environments, from freshwater to seawater. This genus contains evolutionarily and ecologically unique species, such as those that have lost photosynthetic capacity or those that live symbiotically in dinoflagellates. Several Nitzschia species have been used as indicators of water pollution. Recently, Nitzschia species have attracted considerable attention in the field of biotechnology. In this study, a transformation method for the marine pennate diatom Nitzschia sp. strain NIES-4635, isolated from the coastal Seto Inland Sea, was established. Plasmids containing the promoter/terminator of the fucoxanthin chlorophyll a/c binding protein gene (fcp, or Lhcf) derived from Nitzschia palea were constructed and introduced into cells by multi-pulse electroporation, resulting in 500 μg/mL nourseothricin-resistant transformants with transformation frequencies of up to 365 colonies per 108 cells. In addition, when transformation was performed using a new plasmid containing a promoter derived from a diatom-infecting virus upstream of the green fluorescent protein gene (gfp), 44% of the nourseothricin-resistant clones exhibited GFP fluorescence. The integration of the genes introduced into the genomes of the transformants was confirmed by Southern blotting. The Nitzschia transformation method established in this study will enable the transformation this species, thus allowing the functional analysis of genes from the genus Nitzschia, which are important species for environmental and biotechnological development.
Collapse
Affiliation(s)
- Koki Okada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yu Morimoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yukine Shiraishi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shigeki Mayama
- The Advanced Support Center for Science Teachers, Tokyo Gakugei University, Tokyo, 184-8511, Japan
- Tokyo Diatomology Lab, 2-3-2 Nukuikitamachi, Koganei, Tokyo, 184-0015, Japan
| | - Takashi Kadono
- Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Michiko Nemoto
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Zhao Y, Yu Y, Guo J, Zhang Y, Huang L. Rapid and Efficient Optimization Method for a Genetic Transformation System of Medicinal Plants Erigeron breviscapus. Int J Mol Sci 2023; 24:ijms24065611. [PMID: 36982685 PMCID: PMC10058539 DOI: 10.3390/ijms24065611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Erigeron breviscapus is an important medicinal plant with high medicinal and economic value. It is currently the best natural biological drug for the treatment of obliterative cerebrovascular disease and the sequela of cerebral hemorrhage. Therefore, to solve the contradiction between supply and demand, the study of genetic transformation of E. breviscapus is essential for targeted breeding. However, establishing an efficient genetic transformation system is a lengthy process. In this study, we established a rapid and efficient optimized protocol for genetic transformation of E. breviscapus using the hybrid orthogonal method. The effect of different concentrations of selection pressure (Hygromycin B) on callus induction and the optimal pre-culture time of 7 days were demonstrated. The optimal transformation conditions were as follows: precipitant agents MgCl2 + PEG, target tissue distance 9 cm, helium pressure 650 psi, bombardment once, plasmid DNA concentration 1.0 μg·μL−1, and chamber vacuum pressure 27 mmHg. Integration of the desired genes was verified by amplifying 1.02 kb of htp gene from the T0 transgenic line. Genetic transformation of E. breviscapus was carried out by particle bombardment under the optimized conditions, and a stable transformation efficiency of 36.7% was achieved. This method will also contribute to improving the genetic transformation rate of other medicinal plants.
Collapse
Affiliation(s)
- Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Yifan Yu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Yifeng Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
- Correspondence: ; Tel.: +86-010-6408-7469
| |
Collapse
|