1
|
Wang P, Ma Y, Li J, Su J, Chi J, Zhu X, Zhu X, Zhang C, Bi C, Zhang X. Exploring the De Novo NMN Biosynthesis as an Alternative Pathway to Enhance NMN Production. ACS Synth Biol 2024; 13:2425-2435. [PMID: 39023319 DOI: 10.1021/acssynbio.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nicotinamide mononucleotide (NMN) serves as a precursor for NAD+ synthesis and has been shown to have positive effects on the human body. Previous research has predominantly focused on the nicotinamide phosphoribosyltransferase-mediated route (NadV-mediated route) for NMN biosynthesis. In this study, we have explored the de novo NMN biosynthesis route as an alternative pathway to enhance NMN production. Initially, we systematically engineered Escherichia coli to enhance its capacity for NMN synthesis and accumulation, resulting in a remarkable over 100-fold increase in NMN yield. Subsequently, we progressively enhanced the de novo NMN biosynthesis route to further augment NMN production. We screened and identified the crucial role of MazG in catalyzing the enzymatic cleavage of NAD+ to NMN. And the de novo NMN biosynthesis route was optimized and integrated with the NadV-mediated NMN biosynthetic pathways, leading to an intracellular concentration of 844.10 ± 17.40 μM NMN. Furthermore, the introduction of two transporters enhanced the uptake of NAM and the excretion of NMN, resulting in NMN production of 1293.73 ± 61.38 μM. Finally, by engineering an E. coli strain with optimized PRPP synthetase, we achieved the highest NMN production, reaching 3067.98 ± 27.25 μM after 24 h of fermentation at the shake flask level. In addition to constructing an efficient E. coli cell factory for NMN production, our findings provide new insights into understanding the NAD+ salvage pathway and its role in energy metabolism within E. coli.
Collapse
Affiliation(s)
- Pengju Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yidan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300382, China
| | - Junchang Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Junxi Chi
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingmiao Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
3
|
Liu Y, Yasawong M, Yu B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide. Microb Biotechnol 2021; 14:2581-2591. [PMID: 34310854 PMCID: PMC8601175 DOI: 10.1111/1751-7915.13901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
The β-nicotinamide mononucleotide (NMN) is a key intermediate of an essential coenzyme for cellular redox reactions, NAD. Administration of NMN is reported to improve various symptoms, such as diabetes and age-related physiological decline. Thus, NMN is attracting much attention as a promising nutraceutical. Here, we engineered an Escherichia coli strain to produce NMN from cheap substrate nicotinamide (NAM) and glucose. The supply of in vivo precursor phosphoribosyl pyrophosphate (PRPP) and ATP was enhanced by strengthening the metabolic flux from glucose. A nicotinamide phosphoribosyltransferase with high activity was newly screened, which is the key enzyme for converting NAM to NMN with PRPP as cofactor. Notably, the E. coli endogenous protein YgcS, which function is primarily in the uptake of sugars, was firstly proven to be beneficial for NMN production in this study. Fine-tuning regulation of ygcS gene expression in the engineered E. coli strain increased NMN production. Combined with process optimization of whole-cell biocatalysts reaction, a final NMN titre of 496.2 mg l-1 was obtained.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Montri Yasawong
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Program on Environmental ToxicologyChulabhorn Graduate InstituteChulabhorn Royal AcademyBangkok10210Thailand
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- China‐Thailand Joint Laboratory on Microbial BiotechnologyBeijingChina
| |
Collapse
|
4
|
Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021; 16:e0247806. [PMID: 33770091 PMCID: PMC7997004 DOI: 10.1371/journal.pone.0247806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.
Collapse
Affiliation(s)
- Steven Russum
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Katie Jing Kay Lam
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Nicholas Alan Wong
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Vasu Iddamsetty
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Kevin J. Hendargo
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Jianing Wang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Aditi Dubey
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Yichi Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Arturo Medrano-Soto
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| | - Milton H. Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| |
Collapse
|
5
|
Shoji S, Yamaji T, Makino H, Ishii J, Kondo A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metab Eng 2020; 65:167-177. [PMID: 33220420 DOI: 10.1016/j.ymben.2020.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l-1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Taiki Yamaji
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Harumi Makino
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
6
|
Wang D, Liu J, Chen Q, Yang R, Jiang Q. Upregulation of glutaminase 2 and neutrophil cytosolic factor 2 is associated with the poor prognosis of glioblastoma. Biomark Med 2020; 14:1585-1597. [PMID: 33179520 DOI: 10.2217/bmm-2020-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: This study aimed to identify glioblastoma prognosis-associated genes with potential diagnosis or prognosis values using integrated bioinformatics analysis. Results: In total, 1831 differentially expressed genes (DEGs) between the glioblastoma and control samples were identified and were clustered into seven weighed gene co-expression network analysis (WGCNA) modules. These DEGs were associated with different functional categories and pathways. Nine prognosis-associated DEGs (including glutaminase 2 [GLS2] and neutrophil cytosolic factor 2 [NCF2]) were identified, and the higher expression levels of GLS2 and NCF2 genes were associated with the poor prognosis of glioblastoma in 'The Cancer Genome Atlas' cohort and a clinical cohort. Conclusion: These results showed that the two genes play novel roles in the etiological and development of glioblastoma.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jun Liu
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Qiang Chen
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - RuiJin Yang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China
| |
Collapse
|
7
|
|
8
|
Liu L, Zhang F, Li G, Wang G. Qualitative and Quantitative NAD + Metabolomics Lead to Discovery of Multiple Functional Nicotinate N-Glycosyltransferase in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1164. [PMID: 31611893 PMCID: PMC6776627 DOI: 10.3389/fpls.2019.01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The Preiss-Handler pathway, which salvages nicotinate (NA) for NAD synthesis, is a conserved biochemical pathway in land plants. We previously demonstrated that various NA conjugations (mainly methylation and glycosylation) shared the NA detoxification function in all tested plants. It remains unclear whether other NA conjugates with low abundance exist in plants. In this study, we discovered at least two additional NA N-glycosides in Arabidopsis, which was tentatively elucidated as nicotinate N-pentoside (NaNP) and NA N-rhamoside (NaNRha), using liquid chromatography triple-quadrupole mass spectrometry (LC-QQQ-MS) with precursor ion-scanning (PreIS). We further quantitatively profile the NAD+-related metabolites in 24 tissues of Arabidopsis. Biochemical assays of UGT76C family revealed that UGT76C5 (encoded by At5g05890, previously identified as NaNGT) was a multiple functional nicotinate N-glycosyltransferase, with high preference to UDP-xylose and UDP-arabinose. The deficiency of NaNP and NaNRha in ugt76c5 mutant suggested that UGT76C5 is responsible for biosynthesis of NaNP and NaNRha in planta. We also identify one amino acid difference in PSPG (plant secondary product glycosyltransferase) motif is responsible for the divergence of NaNGT (UGT76C4) and UGT76C5. Taken together, our study not only identifies a novel nicotinate N-glycosyltransferase but also paves the way for investigations of the in planta physiological functions of various NA conjugations.
Collapse
Affiliation(s)
- Lingyun Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guosheng Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
10
|
A plastidial pantoate transporter with a potential role in pantothenate synthesis. Biochem J 2018; 475:813-825. [DOI: 10.1042/bcj20170883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
The pantothenate (vitamin B5) synthesis pathway in plants is not fully defined because the subcellular site of its ketopantoate → pantoate reduction step is unclear. However, the pathway is known to be split between cytosol, mitochondria, and potentially plastids, and inferred to involve mitochondrial or plastidial transport of ketopantoate or pantoate. No proteins that mediate these transport steps have been identified. Comparative genomic and transcriptomic analyses identified Arabidopsis thaliana BASS1 (At1g78560) and its maize (Zea mays) ortholog as candidates for such a transport role. BASS1 proteins belong to the bile acid : sodium symporter family and share similarity with the Salmonella enterica PanS pantoate/ketopantoate transporter and with predicted bacterial transporters whose genes cluster on the chromosome with pantothenate synthesis genes. Furthermore, Arabidopsis BASS1 is co-expressed with genes related to metabolism of coenzyme A, the cofactor derived from pantothenate. Expression of Arabidopsis or maize BASS1 promoted the growth of a S. enterica panB panS mutant strain when pantoate, but not ketopantoate, was supplied, and increased the rate of [3H]pantoate uptake. Subcellular localization of green fluorescent protein fusions in Nicotiana tabacum BY-2 cells demonstrated that Arabidopsis BASS1 is targeted solely to the plastid inner envelope. Two independent Arabidopsis BASS1 knockout mutants accumulated pantoate ∼10-fold in leaves and had smaller seeds. Taken together, these data indicate that BASS1 is a physiologically significant plastidial pantoate transporter and that the pantoate reduction step in pantothenate biosynthesis could be at least partly localized in plastids.
Collapse
|
11
|
Brickman TJ, Suhadolc RJ, McKelvey PJ, Armstrong SK. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis. Mol Microbiol 2016; 103:423-438. [PMID: 27783449 DOI: 10.1111/mmi.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Ryan J Suhadolc
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Pamela J McKelvey
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| |
Collapse
|
12
|
Functional mining of transporters using synthetic selections. Nat Chem Biol 2016; 12:1015-1022. [DOI: 10.1038/nchembio.2189] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
|
13
|
Ong Q, Nguyen P, Thao NP, Le L. Bioinformatics Approach in Plant Genomic Research. Curr Genomics 2016; 17:368-78. [PMID: 27499685 PMCID: PMC4955030 DOI: 10.2174/1389202917666160331202956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022] Open
Abstract
The advance in genomics technology leads to the dramatic change in plant biology research. Plant biologists now easily access to enormous genomic data to deeply study plant high-density genetic variation at molecular level. Therefore, fully understanding and well manipulating bioinformatics tools to manage and analyze these data are essential in current plant genome research. Many plant genome databases have been established and continued expanding recently. Meanwhile, analytical methods based on bioinformatics are also well developed in many aspects of plant genomic research including comparative genomic analysis, phylogenomics and evolutionary analysis, and genome-wide association study. However, constantly upgrading in computational infrastructures, such as high capacity data storage and high performing analysis software, is the real challenge for plant genome research. This review paper focuses on challenges and opportunities which knowledge and skills in bioinformatics can bring to plant scientists in present plant genomics era as well as future aspects in critical need for effective tools to facilitate the translation of knowledge from new sequencing data to enhancement of plant productivity.
Collapse
Affiliation(s)
- Quang Ong
- Plant Abiotic Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
D'Arrigo I, Bojanovič K, Yang X, Holm Rau M, Long KS. Genome-wide mapping of transcription start sites yields novel insights into the primary transcriptome ofPseudomonas putida. Environ Microbiol 2016; 18:3466-3481. [DOI: 10.1111/1462-2920.13326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Isotta D'Arrigo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Klara Bojanovič
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Xiaochen Yang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Martin Holm Rau
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Katherine S. Long
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| |
Collapse
|
15
|
Stehr M, Elamin AA, Singh M. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev Anti Infect Ther 2015; 13:593-603. [PMID: 25746054 DOI: 10.1586/14787210.2015.1021784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pyrazinamide (PZA) is still one of the key drugs used in current therapeutic regimens for tuberculosis (TB). Despite its importance for TB therapy, the mode of action of PZA remains unknown. PZA has to be converted to its active form pyrazinoic acid (POA) by the nicotinamidase PncA and is then excreted by an unknown efflux pump. At acidic conditions, POA is protonated to HPOA and is reabsorbed into the cell where it causes cellular damage. For a long time, it has been thought that PZA/POA has no defined target of action, but recent studies have shown that both PZA and POA have several different targets interfering with diverse biochemical pathways, especially in the NAD(+) and energy metabolism. PZA resistance seems to depend not only on a defective pyrazinamidase but is also rather a result of the interplay of many different enzyme targets and transport mechanisms.
Collapse
Affiliation(s)
- Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Straße 196, D-38126, Braunschweig, Germany
| | | | | |
Collapse
|
16
|
Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochim Biophys Acta Gen Subj 2015; 1850:565-76. [DOI: 10.1016/j.bbagen.2014.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/13/2023]
|
17
|
Li H, Fan R, Li L, Wei B, Li G, Gu L, Wang X, Zhang X. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. PLANT, CELL & ENVIRONMENT 2014; 37:1561-1573. [PMID: 24372025 DOI: 10.1111/pce.12263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/08/2013] [Indexed: 06/03/2023]
Abstract
Copper is an essential micronutrient for plant growth and development, and copper transporter plays a pivotal role for keeping copper homeostasis. However, little is known about copper transporters in wheat. Here, we report a novel copper transporter gene family, TaCT1, in common wheat. Three TaCT1 homoeologous genes were isolated and assigned to group 5 chromosomes. Each of the TaCT1 genes (TaCT1-5A, -5B or -5D) possesses 12 transmembrane domains. TaCT1 genes exhibited higher transcript levels in leaf than in root, culm and spikelet. Excess copper down-regulated the transcript levels of TaCT1 and copper deficiency-induced TaCT1 expression. Subcellular experiments localized the TaCT1 to the Golgi apparatus. Yeast expression experiments and virus-induced gene silencing analysis indicated that the TaCT1 functioned in copper transport. Site-directed mutagenesis demonstrated that three amino acid residues, Met(35), Met(38) and Cys(365), are required for TaCT1 function. Phylogenetic and functional analyses suggested that homologous genes shared high similarity with TaCT1 may exist exclusively in monocot plants. Our work reveals a novel wheat gene family encoding major facilitator superfamily (MFS)-type copper transporters, and provides evidence for their functional involvement in promoting copper uptake and keeping copper homeostasis in common wheat.
Collapse
Affiliation(s)
- Haoxun Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, The State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Center for Plant Gene Research (Beijing), Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fagen JR, Leonard MT, McCullough CM, Edirisinghe JN, Henry CS, Davis MJ, Triplett EW. Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of Liberibacter. PLoS One 2014; 9:e84469. [PMID: 24416233 PMCID: PMC3885570 DOI: 10.1371/journal.pone.0084469] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/21/2013] [Indexed: 12/28/2022] Open
Abstract
The full genomes of two uncultured plant pathogenic Liberibacter, Ca. Liberibacter asiaticus and Ca. Liberibacter solanacearum, are publicly available. Recently, the larger genome of a closely related cultured strain, Liberibacter crescens BT-1, was described. To gain insights into our current inability to culture most Liberibacter, a comparative genomics analysis was done based on the RAST, KEGG, and manual annotations of these three organisms. In addition, pathogenicity genes were examined in all three bacteria. Key deficiencies were identified in Ca. L. asiaticus and Ca. L. solanacearum that might suggest why these organisms have not yet been cultured. Over 100 genes involved in amino acid and vitamin synthesis were annotated exclusively in L. crescens BT-1. However, none of these deficiencies are limiting in the rich media used to date. Other genes exclusive to L. crescens BT-1 include those involved in cell division, the stringent response regulatory pathway, and multiple two component regulatory systems. These results indicate that L. crescens is capable of growth under a much wider range of conditions than the uncultured Liberibacter strains. No outstanding differences were noted in pathogenicity-associated systems, suggesting that L. crescens BT-1 may be a plant pathogen on an as yet unidentified host.
Collapse
Affiliation(s)
- Jennie R. Fagen
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael T. Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Connor M. McCullough
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Janaka N. Edirisinghe
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Michael J. Davis
- Plant Pathology Department, Citrus Research and Development Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
19
|
Kingston AW, Liao X, Helmann JD. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18. [PMID: 23980836 PMCID: PMC4067139 DOI: 10.1111/mmi.12380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.
Collapse
Affiliation(s)
| | - Xiaojie Liao
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Comparative genomics approaches to understanding and manipulating plant metabolism. Curr Opin Biotechnol 2013; 24:278-84. [DOI: 10.1016/j.copbio.2012.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
|
21
|
Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH. The major facilitator superfamily (MFS) revisited. FEBS J 2012; 279:2022-35. [PMID: 22458847 DOI: 10.1111/j.1742-4658.2012.08588.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary carriers found in the biosphere. It is ubiquitously distributed throughout virtually all currently recognized organismal phyla. This superfamily currently (2012) consists of 74 families, each of which is usually concerned with the transport of a certain type of substrate. Many of these families, defined phylogenetically, do not include even a single member that is functionally characterized. In this article, we probe the evolutionary origins of these transporters, providing evidence that they arose from a single 2-transmembrane segment (TMS) hairpin structure that triplicated to give a 6-TMS unit that duplicated to a 12-TMS protein, the most frequent topological type of these permeases. We globally examine MFS protein topologies, focusing on exceptional proteins that deviate from the norm. Nine distantly related families appear to have members with 14 TMSs in which the extra two are usually centrally localized between the two 6-TMS repeat units. They probably have arisen by intragenic duplication of an adjacent hairpin. This alternative topology probably arose multiple times during MFS evolution. Convincing evidence for MFS permeases with fewer than 12 TMSs was not forthcoming, leading to the suggestion that all 12 TMSs are required for optimal function. Some homologs appear to have 13, 14, 15 or 16 TMSs, and the probable locations of the extra TMSs were identified. A few MFS permeases are fused to other functional domains or are fully duplicated to give 24-TMS proteins with dual functions. Finally, the MFS families with no known function were subjected to genomic context analyses leading to functional predictions.
Collapse
Affiliation(s)
- Vamsee S Reddy
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|