1
|
Zhou Z, Liu C, Qin M, Li W, Hou J, Shi X, Dai Z, Yao W, Tian B, Lei Z, Li Y, Wu Z. Promoter DNA hypermethylation of TaGli-γ-2.1 positively regulates gluten strength in bread wheat. J Adv Res 2022; 36:163-173. [PMID: 35127171 PMCID: PMC8799914 DOI: 10.1016/j.jare.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
TaGli-γ-2.1 belonged to a subgroup of γ-gliadin multigene family. TaGli-γ-2.1 was a negative regulatory factor in gluten strength. Methylation of pTaGli-γ-2.1 played a key role in regulating TaGli-γ-2.1 expression. Lower γ-gliadin content followed with hypermethylation of pTaGli-γ-2.1. Decreasing TaGli-γ-2.1 expression could be used to improve gluten strength in wheat breeding.
Introduction Gliadins are the major components of gluten proteins with vital roles on properties of end-use wheat product and health-relate quality of wheat. However, the function and regulation mechanisms of γ-gliadin genes remain unclear. Objectives Dissect the effect of DNA methylation in the promoter of γ-gliadin gene on its expression level and gluten strength of wheat. Methods The prokaryotic expression and reduction–oxidation reactions were performed to identify the effect of TaGli-γ-2.1 on dough strength. Bisulfite analysis and 5-Aza-2′-deoxycytidine treatment were used to verify the regulation of TaGli-γ-2.1 expression by pTaGli-γ-2.1 methylation. The content of gluten proteins composition was measured by RP-HPLC, and the gluten strength was measured by Gluten Index and Farinograph. Results TaGli-γ-2.1 was classified into a subgroup of γ-gliadin multigene family and was preferentially expressed in the later period of grain filling. Addition of TaGli-γ-2.1 protein fragment into strong gluten wheat flour significantly decreased the stability time. Hypermethylation of three CG loci of pTaGli-γ-2.1 conferred to lower TaGli-γ-2.1 expression. Treatment with 5-Aza-2′-deoxycytidine in seeds of strong gluten wheat varieties increased the expression levels of TaGli-γ-2.1. Furthermore, the accumulations of gliadin and γ-gliadin were significantly decreased in hypermethylated wheat varieties, corresponding with the increasing of gluten index and dough stability time. Conclusion Epigenetic modification of pTaGli-γ-2.1 affected gluten strength by modulating the proportion of gluten proteins. Hypermethylation of pTaGli-γ-2.1 is a novel genetic resource for enhancing gluten strength in wheat quality breeding.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Agronomy College, Zhengzhou University, Zhengzhou 450001, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Baoming Tian
- Agronomy College, Zhengzhou University, Zhengzhou 450001, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- Agronomy College, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Agronomy College, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Genome-wide identification, characteristics and expression of the prolamin genes in Thinopyrum elongatum. BMC Genomics 2021; 22:864. [PMID: 34852761 PMCID: PMC8638145 DOI: 10.1186/s12864-021-08088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. Results In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. Conclusions Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08088-x.
Collapse
|
3
|
Paris R, Petruzzino G, Savino M, De Simone V, Ficco DBM, Trono D. Genome-Wide Identification, Characterization and Expression Pattern Analysis of the γ-Gliadin Gene Family in the Durum Wheat ( Triticum durum Desf.) Cultivar Svevo. Genes (Basel) 2021; 12:genes12111743. [PMID: 34828349 PMCID: PMC8621147 DOI: 10.3390/genes12111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.
Collapse
Affiliation(s)
- Roberta Paris
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy;
| | - Giuseppe Petruzzino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Vanessa De Simone
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Donatella B. M. Ficco
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
- Correspondence:
| |
Collapse
|
4
|
Metakovsky E, Pascual L, Vaccino P, Melnik V, Rodriguez-Quijano M, Popovych Y, Chebotar S, Rogers WJ. Heteroalleles in Common Wheat: Multiple Differences between Allelic Variants of the Gli-B1 Locus. Int J Mol Sci 2021; 22:ijms22041832. [PMID: 33673225 PMCID: PMC7917834 DOI: 10.3390/ijms22041832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.
Collapse
Affiliation(s)
- Eugene Metakovsky
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
- Correspondence:
| | - Patrizia Vaccino
- Consiglio per la Recerca in Agricultura e l’Analisi dell’Economia Agraria, Research Centre for Cereal and Industrial Crops, 13100 Vercelli, Italy;
| | - Viktor Melnik
- Vavilov Institute of General Genetics RAS, 117971 Moscow, Russia;
| | - Marta Rodriguez-Quijano
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
| | - Yulia Popovych
- Department of Genetics and Molecular Biology, National I.I. Mechnikov University, 65058 Odessa, Ukraine; (Y.P.); (S.C.)
| | - Sabina Chebotar
- Department of Genetics and Molecular Biology, National I.I. Mechnikov University, 65058 Odessa, Ukraine; (Y.P.); (S.C.)
| | - William John Rogers
- Departamento de Biología Aplicada, CIISAS, CIC-BIOLAB, CONICET-INBIOTEC, CRESCA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia Buenos Aires, 7300 Azul, Provincia de Buenos Aires, Argentina;
| |
Collapse
|
5
|
Cho K, Beom HR, Jang YR, Altenbach SB, Vensel WH, Simon-Buss A, Lim SH, Kim MG, Lee JY. Proteomic Profiling and Epitope Analysis of the Complex α-, γ-, and ω-Gliadin Families in a Commercial Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:818. [PMID: 29971078 PMCID: PMC6018075 DOI: 10.3389/fpls.2018.00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 05/24/2023]
Abstract
Wheat gliadins are a complex group of proteins that contribute to the functional properties of wheat flour doughs and contain epitopes that are relevant for celiac disease (CD) and wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, we extracted ethanol-soluble gliadin fractions from flour of the Korean bread wheat cultivar Keumkang. Proteins were separated by 2-dimensional gel electrophoresis (2-DE) using a pI range of 6-11 in the first dimension and subjected to tandem mass spectrometry. α-, γ-, and ω-gliadins were identified as the predominant proteins in 31, 28, and one 2-DE spot, respectively. An additional six ω-gliadins were identified in a separate experiment in which a pI range of 3-11 was used for protein separation. We analyzed the composition of CD- and WDEIA-relevant epitopes in the gliadin sequences from Keumkang flour, demonstrating the immunogenic potential of this cultivar. Detailed knowledge about the complement of gliadins accumulated in Keumkang flour provides the background necessary to devise either breeding or biotechnology strategies to improve the functional properties and reduce the adverse health effects of the flour.
Collapse
Affiliation(s)
- Kyoungwon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hye-Rang Beom
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - You-Ran Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - William H. Vensel
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Sun-Hyung Lim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Min G. Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| |
Collapse
|
6
|
Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. Int J Genomics 2018; 2018:6897032. [PMID: 29581960 PMCID: PMC5822904 DOI: 10.1155/2018/6897032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.
Collapse
|
7
|
Metakovsky EV, Melnik VA, Vaccino P, Rodriguez-Quijano M. Comparison of alleles at the Gli-1 loci of common wheat by means of two-dimensional electrophoresis of gliadin and RFLP analysis. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Wang D, Zhang K, Dong L, Dong Z, Li Y, Hussain A, Zhai H. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Kawaura K, Miura M, Kamei Y, Ikeda TM, Ogihara Y. Molecular characterization of gliadins of Chinese Spring wheat in relation to celiac disease elicitors. Genes Genet Syst 2018; 93:9-20. [PMID: 29343665 DOI: 10.1266/ggs.17-00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The wheat seed storage proteins gliadin and glutenin are encoded by multigenes. Gliadins are further classified into α-, γ-, δ- and ω-gliadins. Genes encoding α-gliadins belong to a large multigene family, whose members are located on the homoeologous group 6 chromosomes at the Gli-2 loci. Genes encoding other gliadins are located on the homoeologous group 1 chromosomes at the Gli-1 loci. Two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to characterize and profile the gliadins. The gliadins in aneuploid Chinese Spring wheat lines were then compared in this study. Gliadin proteins separated into 70 spots after 2-DE and a total of 10, 10 and 16 spots were encoded on chromosomes 6A, 6B and 6D, respectively, which suggested that they were α-gliadins. Similarly, six, three and seven spots were encoded on chromosomes 1A, 1B and 1D, respectively, which indicated that they were γ-gliadins. Spots that could not be assigned to chromosomes were N-terminally sequenced and were all determined to be α-gliadins or γ-gliadins. The 2-DE profiles showed that specific α-gliadin spots assigned to chromosome 6D were lost in tetrasomic chromosome 2A lines. Furthermore, western blotting against the Glia-α9 peptide, an epitope for celiac disease (CD), suggested that α-gliadins harboring the CD epitope on chromosome 6D were absent in the tetrasomic chromosome 2A lines. Systematic analysis of α-gliadins using 2-DE, quantitative RT-PCR and genomic PCR revealed that tetrasomic 2A lines carry deletion of a chromosome segment at the Gli-D2 locus. This structural alteration at the Gli-D2 locus may provide a genetic resource in breeding programs for the reduction of CD immunotoxicity.
Collapse
Affiliation(s)
- Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University
| | - Mayuko Miura
- Kihara Institute for Biological Research, Yokohama City University
| | - Yoko Kamei
- Kihara Institute for Biological Research, Yokohama City University
| | - Tatsuya M Ikeda
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University
| |
Collapse
|
10
|
Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci Rep 2017; 7:44609. [PMID: 28300172 PMCID: PMC5353739 DOI: 10.1038/srep44609] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation RNA sequencing, full-length transcripts were identified for 52 gliadin genes in the bread wheat cultivar Xiaoyan 81. Of them, 42 were active and predicted to encode 25 α-, 11 γ-, one δ- and five ω-gliadins. Comparative proteomic analysis between Xiaoyan 81 and six newly-developed mutants each lacking one Gli locus indicated the accumulation of 38 gliadins in the mature grains. A novel group of α-gliadins (the CSTT group) was recognized to contain very few or no CD epitopes. The δ-gliadins identified here or previously did not carry CD epitopes. Finally, the mutant lacking Gli-D2 showed significant reductions in the most celiac-toxic α-gliadins and derivative CD epitopes. The insights and resources generated here should aid further studies on gliadin functions in CD and the breeding of healthier wheat.
Collapse
|
11
|
Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem 2016; 213:8-18. [DOI: 10.1016/j.foodchem.2016.06.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
|
12
|
Barro F, Iehisa JCM, Giménez MJ, García-Molina MD, Ozuna CV, Comino I, Sousa C, Gil-Humanes J. Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:986-96. [PMID: 26300126 PMCID: PMC11388856 DOI: 10.1111/pbi.12455] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 05/04/2023]
Abstract
Gluten proteins are responsible for the viscoelastic properties of wheat flour but also for triggering pathologies in susceptible individuals, of which coeliac disease (CD) and noncoeliac gluten sensitivity may affect up to 8% of the population. The only effective treatment for affected persons is a strict gluten-free diet. Here, we report the effectiveness of seven plasmid combinations, encompassing RNAi fragments from α-, γ-, ω-gliadins, and LMW glutenin subunits, for silencing the expression of different prolamin fractions. Silencing patterns of transgenic lines were analysed by gel electrophoresis, RP-HPLC and mass spectrometry (LC-MS/MS), whereas gluten immunogenicity was assayed by an anti-gliadin 33-mer monoclonal antibody (moAb). Plasmid combinations 1 and 2 downregulated only γ- and α-gliadins, respectively. Four plasmid combinations were highly effective in the silencing of ω-gliadins and γ-gliadins, and three of these also silenced α-gliadins. HMW glutenins were upregulated in all but one plasmid combination, while LMW glutenins were downregulated in three plasmid combinations. Total protein and starch contents were unaffected regardless of the plasmid combination used. Six plasmid combinations provided strong reduction in the gluten content as measured by moAb and for two combinations, this reduction was higher than 90% in comparison with the wild type. CD epitope analysis in peptides identified in LC-MS/MS showed that lines from three plasmid combinations were totally devoid of CD epitopes from the highly immunogenic α- and ω-gliadins. Our findings raise the prospect of breeding wheat species with low levels of harmful gluten, and of achieving the important goal of developing nontoxic wheat cultivars.
Collapse
Affiliation(s)
- Francisco Barro
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Julio C M Iehisa
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - María J Giménez
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - María D García-Molina
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Carmen V Ozuna
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Isabel Comino
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carolina Sousa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Javier Gil-Humanes
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
13
|
Abstract
Coeliac disease is an intolerance triggered by the ingestion of wheat gluten proteins. It is of increasing concern to consumers and health professionals as its incidence appears to be increasing. The amino acid sequences in gluten proteins that are responsible for triggering responses in sensitive individuals have been identified showing that they vary in distribution among and between different groups of gluten proteins. Conventional breeding may therefore be used to select for gluten protein fractions with lower contents of coeliac epitopes. Molecular breeding approaches can also be used to specifically down-regulate coeliac-toxic proteins or mutate coeliac epitopes within individual proteins. A combination of these approaches may therefore be used to develop a “coeliac-safe” wheat. However, this remains a formidable challenge due to the complex multigenic control of gluten protein composition. Furthermore, any modified wheats must retain acceptable properties for making bread and other processed foods. Not surprisingly, such coeliac-safe wheats have not yet been developed despite over a decade of research. Coeliac disease is of increasing concern as its incidence appears to be increasing. Over 30 amino acid sequences (coeliac epitopes) have been defined. Coeliac epitopes differ in their distribution between wheat gluten proteins. Transgenesis can be used to reduce coeliac-toxic proteins and coeliac epitopes. This can be exploited to develop “coeliac-safe” wheats.
Collapse
Affiliation(s)
- Peter R Shewry
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
| | - Arthur S Tatham
- Cardiff School of Heath Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
14
|
Dong L, Liu H, Zhang J, Yang S, Kong G, Chu JSC, Chen N, Wang D. Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 2015; 16:1039. [PMID: 26645802 PMCID: PMC4673716 DOI: 10.1186/s12864-015-2257-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background The large and complex hexaploid genome has greatly hindered genomics studies of common wheat (Triticum aestivum, AABBDD). Here, we investigated transcripts in common wheat developing caryopses using the emerging single-molecule real-time (SMRT) sequencing technology PacBio RSII, and assessed the resultant data for improving common wheat genome annotation and grain transcriptome research. Results We obtained 197,709 full-length non-chimeric (FLNC) reads, 74.6 % of which were estimated to carry complete open reading frame. A total of 91,881 high-quality FLNC reads were identified and mapped to 16,188 chromosomal loci, corresponding to 13,162 known genes and 3026 new genes not annotated previously. Although some FLNC reads could not be unambiguously mapped to the current draft genome sequence, many of them are likely useful for studying highly similar homoeologous or paralogous loci or for improving chromosomal contig assembly in further research. The 91,881 high-quality FLNC reads represented 22,768 unique transcripts, 9591 of which were newly discovered. We found 180 transcripts each spanning two or three previously annotated adjacent loci, suggesting that they should be merged to form correct gene models. Finally, our data facilitated the identification of 6030 genes differentially regulated during caryopsis development, and full-length transcripts for 72 transcribed gluten gene members that are important for the end-use quality control of common wheat. Conclusions Our work demonstrated the value of PacBio transcript sequencing for improving common wheat genome annotation through uncovering the loci and full-length transcripts not discovered previously. The resource obtained may aid further structural genomics and grain transcriptome studies of common wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2257-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingli Dong
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongfang Liu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Juncheng Zhang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuangjuan Yang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guanyi Kong
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Jeffrey S C Chu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China. .,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Nansheng Chen
- School of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Daowen Wang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
15
|
Zhang Y, Luo G, Liu D, Wang D, Yang W, Sun J, Zhang A, Zhan K. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu. PLoS One 2015; 10:e0131559. [PMID: 26132381 PMCID: PMC4489009 DOI: 10.1371/journal.pone.0131559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.
Collapse
Affiliation(s)
- Yanlin Zhang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Aimin Zhang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail: (KZ); (AZ)
| | - Kehui Zhan
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- * E-mail: (KZ); (AZ)
| |
Collapse
|
16
|
Radhika V, Rao VSH. Computational approaches for the classification of seed storage proteins. Journal of Food Science and Technology 2014; 52:4246-55. [PMID: 26139889 DOI: 10.1007/s13197-014-1500-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.
Collapse
Affiliation(s)
- V Radhika
- Indian Institute of Horticultural Research, Hessaraghatta Lake P.O., Bangalore, 560 089 India
| | - V Sree Hari Rao
- Foundation for Scientific Research and Technological Innovations, Hyderabad, 500 035 A.P India
| |
Collapse
|
17
|
Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KFX, Olsen OA. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 2014; 345:1250091. [PMID: 25035498 DOI: 10.1126/science.1250091] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Simen R Sandve
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Bujie Zhan
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Heidi Rudi
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, NMBU, 1432 Åas, Norway
| | | | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway.
| |
Collapse
|
18
|
Anderson OD. The spectrum of major seed storage genes and proteins in oats (Avena sativa). PLoS One 2014; 9:e83569. [PMID: 25054628 PMCID: PMC4108316 DOI: 10.1371/journal.pone.0083569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022] Open
Abstract
Background The oat seed storage proteins are mainly composed of two classes: the globulins and avenins. Among the major cereals, the globulins are the major seed protein class in rice and oats, and along with the higher protein content of oats is the basis for the relative higher nutrition content in oats compared to the other cereals. The second major class of oat seed proteins is the avenins; also classified as prolamins – seed proteins high in proline and glutamine amino acids. The prolamins are associated with celiac disease, an autoimmune disorder of the gastrointestinal tract. In spite of their importance, neither the oat globulins nor the avenins have been completely analyzed and described for any single germplasm. Results Using available EST resources for a single hexaploid oat cultivar, the spectrum of avenin and globulin sequences are described for the gene coding regions and the derived protein sequences. The nine unique avenin sequences are suggested to be divided into 3–4 distinct subclasses distributed in the hexaploid genome. The globulins from the same germplasm include 24 distinct sequences. Variation in globulin size results mainly from a glutamine-rich domain, similar to as in the avenins, and to variation in the C-terminal sequence domain. Two globulin genes have premature stop codons that shorten the resulting polypeptides by 9 and 17 amino acids, and eight of the globulin sequences form a branch of the globulins not previously reported. Conclusions A more complete description of the major oat seed proteins should allow a more thorough analysis of their contributions to those oat seed characteristics related to nutritional value, evolutionary history, and celiac disease association.
Collapse
Affiliation(s)
- Olin D. Anderson
- Agricultural Research Service, United States Department of Agriculture, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Zhang W, Ciclitira P, Messing J. PacBio sequencing of gene families - a case study with wheat gluten genes. Gene 2013; 533:541-6. [PMID: 24144842 DOI: 10.1016/j.gene.2013.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 12/16/2022]
Abstract
Amino acids in wheat (Triticum aestivum) seeds mainly accumulate in storage proteins called gliadins and glutenins. Gliadins contain α/β-, γ- and ω-types whereas glutenins contain HMW- and LMW-types. Known gliadin and glutenin sequences were largely determined through cloning and sequencing by capillary electrophoresis. This time-consuming process prevents us to intensively study the variation of each orthologous gene copy among cultivars. The throughput and sequencing length of Pacific Bioscience RS (PacBio) single molecule sequencing platform make it feasible to construct contiguous and non-chimeric RNA sequences. We assembled 424 wheat storage protein transcripts from ten wheat cultivars by using just one single-molecule-real-time cell. The protein genes from wheat cultivar Chinese Spring are comparable to known sequences from NCBI. We demonstrated real-time sequencing of gene families with high-throughput and low-cost. This method can be applied to studies of gene amplification and copy number variation among species and cultivars.
Collapse
Affiliation(s)
- Wei Zhang
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
21
|
Abstract
The spectrum of B-hordein prolamins and genes in the single barley cultivar Barke is described from an in silico analysis of 1452 B-hordein ESTs and available genomic DNA. Eleven unique B-hordein proteins are derived from EST contigs. Ten contigs encode apparent full-length B-hordeins and the eleventh contains a premature stop codon that will lead to a truncated B-hordein. The 11 sequences are placed within the two previously described classes, i.e., the B1- and B3-type B-hordeins. The number of ESTs assigned to each sequence is used as an estimate of relative gene transcription and expression. Three of the sequences account for 79% of the total ESTs, with one sequence comprises 32% of the total ESTs and has a variant C-terminus caused by an undefined sequence change history near the 3' coding terminus. The 70× difference in EST distribution among sequences points to the importance of understanding differential rates of expression within closely related gene families. Analysis of available genomic sequences confirms the EST assembly and reveals one full-length and two partial sequences of pseudogenes as evidenced by no matching ESTs for the sequences and premature stop codons and frame shifts.
Collapse
Affiliation(s)
- Olin D Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|