1
|
Han Y, Zhao Y, Wang H, Zhang Y, Ding Q, Ma L. Identification of ceRNA and candidate genes related to fertility conversion of TCMS line YS3038 in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:190-207. [PMID: 33214039 DOI: 10.1016/j.plaphy.2020.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene. Proc Natl Acad Sci U S A 2020; 117:23148-23157. [PMID: 32868445 DOI: 10.1073/pnas.2006296117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heterostyly represents a fascinating adaptation to promote outbreeding in plants that evolved multiple times independently. While l-morph individuals form flowers with long styles, short anthers, and small pollen grains, S-morph individuals have flowers with short styles, long anthers, and large pollen grains. The difference between the morphs is controlled by an S-locus "supergene" consisting of several distinct genes that determine different traits of the syndrome and are held together, because recombination between them is suppressed. In Primula, the S locus is a roughly 300-kb hemizygous region containing five predicted genes. However, with one exception, their roles remain unclear, as does the evolutionary buildup of the S locus. Here we demonstrate that the MADS-box GLOBOSA2 (GLO2) gene at the S locus determines anther position. In Primula forbesii S-morph plants, GLO2 promotes growth by cell expansion in the fused tube of petals and stamen filaments beneath the anther insertion point; by contrast, neither pollen size nor male incompatibility is affected by GLO2 activity. The paralogue GLO1, from which GLO2 arose by duplication, has maintained the ancestral B-class function in specifying petal and stamen identity, indicating that GLO2 underwent neofunctionalization, likely at the level of the encoded protein. Genetic mapping and phylogenetic analysis indicate that the duplications giving rise to the style-length-determining gene CYP734A50 and to GLO2 occurred sequentially, with the CYP734A50 duplication likely the first. Together these results provide the most detailed insight into the assembly of a plant supergene yet and have important implications for the evolution of heterostyly.
Collapse
|
3
|
Han Y, Gao Y, Zhao Y, Zhang D, Zhao C, Xin F, Zhu T, Jian M, Ding Q, Ma L. Energy metabolism involved in fertility of the wheat TCMS line YS3038. PLANTA 2019; 250:2159-2171. [PMID: 31628536 DOI: 10.1007/s00425-019-03281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
In the wheat TCMS line YS3038, the anther development is inhibited from late uninucleate stage to the binucleate stage. The disruption of energy metabolism pathways by aberrant transcriptional regulation causes the male sterility under low temperatures. The utilization of thermosensitive male sterile (TMS) lines provides a basis for two-line breeding. Previous work, including morphological and cytological observations, has shown that the development process of the TMS line YS3038 is inhibited from the late uninucleate stage to the binucleate stage. Transcriptomics studies could now help to elucidate the overall expression of related genes in a specific reproductive process, revealing the metabolic network and its regulatory mechanism of the reproductive process from the transcription level. Considering the fertility characteristics of YS3038, three important stages for transcriptome analysis were determined to be the early uninucleate, late uninucleate and binucleate stages. The number of differentially expressed genes (DEGs) was found to be highest in the binucleate stage, and most were related to energy metabolism. Quantitative PCR analysis of selected genes related to energy metabolism revealed that their expression patterns were consistent with the sequencing results. Analysis of the fertility mechanism of YS3038 showed that although the tapetum of anthers was degraded in advance of the tetrad stage, the development of microspores did not result in obvious abnormalities until the binucleate stage, because the genes involved in energy metabolism pathways, including starch and sucrose metabolism (SSM), glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and respiration electron transport chain are differentially expressed under sterile and fertile conditions. Therefore, the pollen in YS3038 was sterile.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Gao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yue Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Dazhong Zhang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Chao Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Xin
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Ting Zhu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyang Jian
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Qin Ding
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China.
| | - Lingjian Ma
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
4
|
Huang S, Peng S, Liu Z, Li C, Tan C, Yao R, Li D, Li X, Hou L, Feng H. Investigation of the genes associated with a male sterility mutant (msm) in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Mol Genet Genomics 2019; 295:233-249. [PMID: 31673754 DOI: 10.1007/s00438-019-01618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
In Chinese cabbage, hybrid seed production is performed using male sterility lines, an important approach to heterosis utilization. In this study, a stably inherited male sterile mutant msm was obtained from the 'FT'-doubled haploid line of Chinese cabbage using isolated microspore culture combined with 60Co γ-ray mutagenesis. The genetic backgrounds of 'FT' and msm were highly consistent; however, compared with wild-type 'FT', msm exhibited completely degenerated stamens and no pollen phenotype. Other characters showed no significant differences. Cytological observations revealed that stamen abortion in msm begins during the tetrad period and that tapetum cells were abnormally expanded and highly vacuolated, leading to microspore abortion. Genetic analysis indicated that the msm mutant phenotype is controlled by a single recessive nuclear gene. Comparative transcriptome analysis of 'FT' and msm flower buds using RNA-Seq technology revealed 1653 differentially expressed genes, among which, a large number associated with male sterility were detected, including 64 pollen development- and pollen tube growth-related genes, 94 pollen wall development-related genes, 11 phytohormone-related genes, and 16 transcription factor-related genes. An overwhelming majority of these genes were down-regulated in msm compared with 'FT'. Furthermore, KEGG pathway analysis indicated that a variety of carbohydrate metabolic and lipid metabolic pathways were significantly enriched, which may be related to pollen abortion. The expression patterns of 24 male sterility-related genes were analyzed using qRT-PCR. In addition, 24,476 single-nucleotide polymorphisms and 413,073 insertion-deletion events were specifically detected in msm. These results will facilitate elucidation of the regulatory mechanisms underlying male sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shenling Peng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Runpeng Yao
- Department of Horticulture, Tonghua Horticulture Research Institute, Tonghua, 134000, People's Republic of China
| | - Danyang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Xiang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Wei C, Wang H, Heng S, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2525-2539. [PMID: 31165223 DOI: 10.1007/s00122-019-03368-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Successfully constructing restorer lines for the hau CMS line and molecular mapping of Rfh to a 94 kb candidate region on chromosome A03 in Brassica napus. Cytoplasmic male sterility is a general phenomenon in almost 200 species, and the interaction between chimeric genes in mitochondria and restorer genes in nucleus may be responsible for restoration of male fertility. Orf288 has been identified as a CMS-associated gene in the hau CMS line of Brassica napus and Brassica juncea; however, the restorer lines/genes have not been found yet. We therefore have successfully constructed two restorer lines in B. napus by extensive testcrossing and have mapped a major restorer gene Rfh to a physical distance of 94 kb on chromosome A03 by whole-genome resequencing and molecular markers. We found that the restorer line is indeed restored to male fertility at histological level. Comparative genomics and collinearity analysis between close relatives revealed that rearrangements and recombination may have happened and thus caused the production of Rfh or components of the restoration of fertility complex. Meanwhile, nuclear backgrounds with multiple loci and temperature were related to the variation and instability of restoration of fertility in three different populations. Our study provides new sights into the coevolution between restorer genes and CMS-associated genes as well as the cultivation of superior hybrids via molecular breeding.
Collapse
Affiliation(s)
- Chao Wei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| |
Collapse
|
6
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
7
|
Štorchová H. The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants. Int J Mol Sci 2017; 18:E2429. [PMID: 29144434 PMCID: PMC5713397 DOI: 10.3390/ijms18112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The interactions between mitochondria and nucleus substantially influence plant development, stress response and morphological features. The prominent example of a mitochondrial-nuclear interaction is cytoplasmic male sterility (CMS), when plants produce aborted anthers or inviable pollen. The genes responsible for CMS are located in mitochondrial genome, but their expression is controlled by nuclear genes, called fertility restorers. Recent explosion of high-throughput sequencing methods enabled to study transcriptomic alterations in the level of non-coding RNAs under CMS biogenesis. We summarize current knowledge of the role of nucleus encoded regulatory non-coding RNAs (long non-coding RNA, microRNA as well as small interfering RNA) in CMS. We also focus on the emerging data of non-coding RNAs encoded by mitochondrial genome and their possible involvement in mitochondrial-nuclear interactions and CMS development.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic.
| |
Collapse
|
8
|
Duan W, Zhang H, Zhang B, Wu X, Shao S, Li Y, Hou X, Liu T. Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. PLANTA 2017; 245:227-233. [PMID: 27885421 DOI: 10.1007/s00425-016-2622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/20/2016] [Indexed: 05/26/2023]
Abstract
Vernalization-mediated demethylation of BrCKA2 (casein kinase II α-subunit) and BrCKB4 (casein kinase II β-subunit) shorten the period of the clock gene BrCCA1 (circadian clock associated 1) in Brassica rapa. Photoperiod and vernalization are two environmental cues involved in the regulation of floral transition, but the ways in which they interact remain unclear. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental signals. To study the interaction between photoperiod and vernalization in floral transition, we carried out a comparative genomic analysis of genome-wide DNA methylation profiles in normal (CK) and vernalized (CA) leaves from Brassica rapa using methylated-DNA immunoprecipitation sequencing (MeDIP-seq). Two subunits of casein kinase II (CK2), BrCKA2 (catalytic α-subunit of CK2) and BrCKB4 (regulatory β-subunit of CK2), exhibited gradual DNA demethylation and increased expression in vernalized B. rapa. DNA methylation-defective plants demonstrated the causal link between DNA demethylation changes and changes in gene expression. Virus-induced gene silencing (VIGS) of BrCKA2 and BrCKB4 in B. rapa resulted in no change to the period of BrCCA1 (circadian clock associated 1) and a 1-week late flowering time. Finally, we demonstrated that increased levels of BrCKA2 and BrCKB4 in vernalized B. rapa confer elevated CK2 activity, resulting in a shortened period of the clock gene BrCCA1, which plays an important role in perceiving photoperiod in plants. Thus, our results suggest that there is a direct interaction between photoperiod and vernalization through DNA methylation mechanisms.
Collapse
Affiliation(s)
- Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Zhang
- College of LIFE Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Bei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaixu Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|