1
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Dogramaci M, Dobry EP, Fortini EA, Sarkar D, Eshel D, Campbell MA. Physiological and molecular mechanisms associated with potato tuber dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6093-6109. [PMID: 38650389 PMCID: PMC11480654 DOI: 10.1093/jxb/erae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Tuber dormancy is an important physiological trait that impacts post-harvest storage and end-use qualities of potatoes. Overall, dormancy regulation of potato tubers is a complex process driven by genetic as well as environmental factors. Elucidation of the molecular and physiological mechanisms that influence different dormancy stages of tubers has wider potato breeding and industry-relevant implications. Therefore, the primary objective of this review is to present current knowledge of the diversity in tuber dormancy traits among wild relatives of potatoes and discuss how genetic and epigenetic factors contribute to tuber dormancy. Advancements in understanding of key physiological mechanisms involved in tuber dormancy regulation, such as apical dominance, phytohormone metabolism, and oxidative stress responses, are also discussed. This review highlights the impacts of common sprout suppressors on the molecular and physiological mechanisms associated with tuber dormancy and other storage qualities. Collectively, the literature suggests that significant changes in expression of genes associated with the cell cycle, phytohormone metabolism, and oxidative stress response influence initiation, maintenance, and termination of dormancy in potato tubers. Commercial sprout suppressors mainly alter the expression of genes associated with the cell cycle and stress responses and suppress sprout growth rather than prolonging tuber dormancy.
Collapse
Affiliation(s)
- Munevver Dogramaci
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
| | - Emily P Dobry
- College of Agricultural Science, Pennsylvania State University, Lake Erie Regional Grape Research and Extension Center, North East, PA 16428, USA
| | - Evandro A Fortini
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Dipayan Sarkar
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel
| | - Michael A Campbell
- College of Agricultural Science, Pennsylvania State University, Lake Erie Regional Grape Research and Extension Center, North East, PA 16428, USA
| |
Collapse
|
3
|
Liu T, Wu Q, Zhou S, Xia J, Yin W, Deng L, Song B, He T. Molecular Insights into the Accelerated Sprouting of and Apical Dominance Release in Potato Tubers Subjected to Post-Harvest Heat Stress. Int J Mol Sci 2024; 25:1699. [PMID: 38338975 PMCID: PMC10855572 DOI: 10.3390/ijms25031699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change-induced heat stress (HS) increasingly threatens potato (Solanum tuberosum L.) production by impacting tuberization and causing the premature sprouting of tubers grown during the hot season. However, the effects of post-harvest HS on tuber sprouting have yet to be explored. This study aims to investigate the effects of post-harvest HS on tuber sprouting and to explore the underlying transcriptomic changes in apical bud meristems. The results show that post-harvest HS facilitates potato tuber sprouting and negates apical dominance. A meticulous transcriptomic profiling of apical bud meristems unearthed a spectrum of differentially expressed genes (DEGs) activated in response to HS. During the heightened sprouting activity that occurred at 15-18 days of HS, the pathways associated with starch metabolism, photomorphogenesis, and circadian rhythm were predominantly suppressed, while those governing chromosome organization, steroid biosynthesis, and transcription factors were markedly enhanced. The critical DEGs encompassed the enzymes pivotal for starch metabolism, the genes central to gibberellin and brassinosteroid biosynthesis, and influential developmental transcription factors, such as SHORT VEGETATIVE PHASE, ASYMMETRIC LEAVES 1, SHOOT MERISTEMLESS, and MONOPTEROS. These findings suggest that HS orchestrates tuber sprouting through nuanced alterations in gene expression within the meristematic tissues, specifically influencing chromatin organization, hormonal biosynthesis pathways, and the transcription factors presiding over meristem fate determination. The present study provides novel insights into the intricate molecular mechanisms whereby post-harvest HS influences tuber sprouting. The findings have important implications for developing strategies to mitigate HS-induced tuber sprouting in the context of climate change.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China;
| | - Qiaoyu Wu
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Shuai Zhou
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Junhui Xia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (B.S.)
| | - Wang Yin
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Lujun Deng
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (B.S.)
| | - Tianjiu He
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| |
Collapse
|
4
|
Mazhar HSUD, Shafiq M, Ali H, Ashfaq M, Anwar A, Tabassum J, Ali Q, Jilani G, Awais M, Sahu R, Javed MA. Genome-Wide Identification, and In-Silico Expression Analysis of YABBY Gene Family in Response to Biotic and Abiotic Stresses in Potato (Solanum tuberosum). Genes (Basel) 2023; 14:genes14040824. [PMID: 37107580 PMCID: PMC10137784 DOI: 10.3390/genes14040824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
YABBY is among the specific transcription factor (TF) gene family in plants and plays an important role in the development of the leaves and floral organs. Its specific roles include lateral organ development, the establishment of dorsoventral polarity, and response to abiotic stress. Potato is an important crop worldwide and YABBY genes are not still identified and characterized in potato. So, little has been known about YABBY genes in potato until now. This study was carried out to perform genome-wide analysis, which will provide an in-depth analysis about the role of YABBY genes in potato. There have been seven StYAB genes identified, which are found to be located on seven different chromosomes. Through multiple sequence analyses, it has been predicted that the YABBY domain was present in all seven genes while the C2-C2 domain was found to be absent only in StYAB2. With the help of cis-element analysis, the involvement of StYAB genes in light, stress developmental, and hormonal responsiveness has been found. Furthermore, expression analysis from RNA-seq data of different potato organs indicated that all StYAB genes have a role in the vegetative growth of the potato plant. In addition to this, RNA-seq data also identified StYAB3, StYAB5, and StYAB7 genes showing expression during cadmium, and drought stress, while StYAB6 was highly expressed during a viral attack. Moreover, during the attack of Phytophthora infestans on a potato plant StYAB3, StYAB5, StYAB6, and StYAB7 showed high expression. This study provides significant knowledge about the StYAB gene structures and functions, which can later be used for gene cloning, and functional analysis; this information may be utilized by molecular biologists and plant breeders for the development of new potato lines.
Collapse
|
5
|
Nicolas M, Torres-Pérez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML, Zamarreño AM, Martín-Jouve B, García-Mina JM, Oliveros JC, Prat S, Cubas P. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. NATURE PLANTS 2022; 8:281-294. [PMID: 35318445 DOI: 10.1038/s41477-022-01112-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The control of carbon allocation, storage and usage is critical for plant growth and development and is exploited for both crop food production and CO2 capture. Potato tubers are natural carbon reserves in the form of starch that have evolved to allow propagation and survival over winter. They form from stolons, below ground, where they are protected from adverse environmental conditions and animal foraging. We show that BRANCHED1b (BRC1b) acts as a tuberization repressor in aerial axillary buds, which prevents buds from competing in sink strength with stolons. BRC1b loss of function leads to ectopic production of aerial tubers and reduced underground tuberization. In aerial axillary buds, BRC1b promotes dormancy, abscisic acid responses and a reduced number of plasmodesmata. This limits sucrose accumulation and access of the tuberigen protein SP6A. BRC1b also directly interacts with SP6A and blocks its tuber-inducing activity in aerial nodes. Altogether, these actions help promote tuberization underground.
Collapse
Affiliation(s)
- Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.
| | - Rafael Torres-Pérez
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Wahl
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Eduard Cruz-Oró
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Luisa Rodríguez-Buey
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel María Zamarreño
- Department of Environmental Biology, Faculty of Sciences-BIOMA Institute, University of Navarra, Pamplona, Spain
| | - Beatriz Martín-Jouve
- Electron Microscopy Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - José María García-Mina
- Department of Environmental Biology, Faculty of Sciences-BIOMA Institute, University of Navarra, Pamplona, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Salomé Prat
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
- Department of Plant Development and Signal Transduction, Centre for Research in Agricultural Genomics (CRAG-CSIC), Barcelona, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Zhang G, Tang R, Niu S, Si H, Yang Q, Rajora OP, Li XQ. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: Comparative transcriptomics with that induced by postharvest sprouting. HORTICULTURE RESEARCH 2021; 8:226. [PMID: 34654802 PMCID: PMC8519922 DOI: 10.1038/s41438-021-00680-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Crops face increased risk from heat stress due to climate change. Potato (Solanum tuberosum L.) tubers grown in hot summers often have defects including pre-harvest sprouting ("heat sprouts"). We have used 18 potato cultivars to investigate whether heat stress (HS) conditions alone could cause heat sprouting and dormancy changes in tubers. We also examined transcriptomic responses of potato to HS and whether these responses are like those induced by postharvest sprouting. We demonstrated that HS alone caused heat sprouts and shortened postharvest dormancy period, heat-sprouted tubers became dormant after harvest, and cultivars varied substantially for producing heat spouts but there was no clear association with cultivar maturity earliness. Cultivar Innovator did not show any heat sprouts and still had long dormancy. Dormancy-associated genes (DOG1 and SLP) were downregulated in HS tubers like in postharvest sprouting tubers. We have identified 1201 differentially expressed genes, 14 enriched GO terms and 12 enriched KEGG pathways in response to HS in growing tubers of 'Russet Burbank'. Transcriptomic response of 'Russet Burbank' to HS showed significant similarities to that of postharvest non-HS sprouted tubers. Gibberellin biosynthesis pathway was enriched in heat-stressed tubers and was likely involved in heat sprouting and dormancy release. Heat sprouting and postharvest sprouting shared common candidate genes and had significant similarity in gene expression. Our study has significance for selecting potato cultivars for farming, planning storage and utilization of heat-stressed tubers, identifying sprouting-related genes, understanding heat-stress biology, and breeding heat-tolerant potato cultivars, especially for sustainable potato production under climate change.
Collapse
Affiliation(s)
- Guodong Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
| | - Ruimin Tang
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Suyan Niu
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, Fredericton, New Brunswick, Canada.
| |
Collapse
|
7
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
8
|
Hou X, Du Y, Liu X, Zhang H, Liu Y, Yan N, Zhang Z. Genome-Wide Analysis of Long Non-Coding RNAs in Potato and Their Potential Role in Tuber Sprouting Process. Int J Mol Sci 2017; 19:ijms19010101. [PMID: 29286332 PMCID: PMC5796051 DOI: 10.3390/ijms19010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022] Open
Abstract
Sprouting is a key factor affecting the quality of potato tubers. The present study aimed to compare the differential expression of long non-coding RNAs (lncRNAs) in the apical meristem during the dormancy release and sprouting stages by using lncRNA sequencing. Microscopic observations and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed the changes in the morphology and expression of lncRNAs in potato tubers during sprouting. Meristematic cells of potato tuber apical buds divided continuously and exhibited vegetative cone bulging and vascularisation. In all, 3175 lncRNAs were identified from the apical buds of potato tubers, among which 383 lncRNAs were up-regulated and 340 were down-regulated during sprouting. The GO enrichment analysis revealed that sprouting mainly influenced the expression of lncRNAs related to the cellular components of potato apical buds (e.g., cytoplasm and organelles) and cellular metabolic processes. The KEGG enrichment analysis also showed significant enrichment of specific metabolic pathways. In addition, 386 differentially expressed lncRNAs during sprouting were identified as putative targets of 235 potato miRNAs. Quantitative real-time polymerase chain reaction results agreed with the sequencing data. Our study provides the first systematic study of numerous lncRNAs involved in the potato tuber sprouting process and lays the foundation for further studies to elucidate their precise functions.
Collapse
Affiliation(s)
- Xiaodong Hou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
9
|
Velappan Y, Signorelli S, Considine MJ. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? ANNALS OF BOTANY 2017; 120:495-509. [PMID: 28981580 PMCID: PMC5737280 DOI: 10.1093/aob/mcx082] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. SCOPE Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? CONCLUSION Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes.
Collapse
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
- For correspondence. Email
| |
Collapse
|
10
|
Vergara R, Noriega X, Aravena K, Prieto H, Pérez FJ. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds. FRONTIERS IN PLANT SCIENCE 2017; 8:812. [PMID: 28579998 PMCID: PMC5437152 DOI: 10.3389/fpls.2017.00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Recently, the plant hormone abscisic acid (ABA) has been implicated as a key player in the regulation of endodormancy (ED) in grapevine buds (Vitis vinifera L). In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2) and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3) showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG) was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2) and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3), B (VvCYCB), and D (VvCYCD3.2a) and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC) reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.
Collapse
Affiliation(s)
- Ricardo Vergara
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
- Programa Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de ChileSantiago, Chile
| | - Ximena Noriega
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Karla Aravena
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Humberto Prieto
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones Agropecuarias, La PlatinaSantiago, Chile
| | - Francisco J. Pérez
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
- *Correspondence: Francisco J. Pérez,
| |
Collapse
|