1
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
2
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
3
|
Liu L, Ma L, Yu Y, Ma Z, Yin Y, Zhou S, Yu Y, Cui N, Meng X, Fan H. Cucumis sativus CsbZIP90 suppresses Podosphaera xanthii resistance by modulating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111945. [PMID: 38061503 DOI: 10.1016/j.plantsci.2023.111945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Resistance to disease in plants requires the coordinated action of multiple functionally related genes, as it is difficult to improve disease resistance with a single functional gene. Therefore, the use of transcription factors to regulate the expression of multiple resistance genes to improve disease resistance has become a recent focus in the field of gene research. The basic leucine zipper (bZIP) transcription factor family plays vital regulatory roles in processes, such as plant growth and development and the stress response. In our previous study, CsbZIP90 (Cucsa.134370) was involved in the defense response of cucumber to Podosphaera xanthii, but the relationship between cucumber and resistance to powdery mildew remained unclear. Herein, we detected the function of CsbZIP90 in response to P. xanthii. CsbZIP90 was localized to the cytoplasm and nucleus, and its expression was significantly induced during P. xanthii attack. Transient overexpression of CsbZIP90 in cucumber cotyledons resulted in decreased resistance to P. xanthii, while silencing CsbZIP90 increased resistance to P. xanthii. CsbZIP90 negatively regulated the expression of reactive oxygen species (ROS)-related genes and activities of ROS-related kinases. Taken together, our results show that CsbZIP90 suppresses P. xanthi resistance by modulating ROS. This study will provide target genes for breeding cucumbers resistant to P. xanthii.
Collapse
Affiliation(s)
- Linghao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunhan Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Li T, Feng M, Chi Y, Shi X, Sun Z, Wu Z, Li A, Shi W. Defensive Resistance of Cowpea Vigna unguiculata Control Megalurothrips usitatus Mediated by Jasmonic Acid or Insect Damage. PLANTS (BASEL, SWITZERLAND) 2023; 12:942. [PMID: 36840292 PMCID: PMC9967092 DOI: 10.3390/plants12040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Vigna unguiculata is a vital vegetable crop in Southeast Asia, and Megalurothrips usitatus can cause huge damage to this crop. Enhancing the resistance of V. unguiculata against M. usitatus is a promising way to protect this crop; however, there is limited information regarding the mechanism underlying the resistance of V. unguiculata against M. usitatus. Here, a behavior assay was performed to explore the resistance of V. unguiculata against M. usitatus after insect damage or treatment by jasmonic acid (JA). Furthermore, transcriptome and metabonomics analysis was used to detect the putative mechanism underlying the resistance of V. unguiculata against M. usitatus. The pre-treatment of Vigna unguiculata with JA or infestation with Megalurothrips usitatus alleviated the damage resulting from the pest insect. We further identified differentially expressed genes and different metabolites involved in flavonoid biosynthesis and alpha-linolenic acid metabolism. Genes of chalcone reductase and shikimate O-hydroxycinnamoyltransferase involved in flavonoid biosynthesis, as well as lipoxygenase and acyl-CoA oxidase involved in alpha-linolenic acid metabolism, were upregulated in plants after herbivory or JA supplementation. The upregulation of these genes contributed to the high accumulation of metabolites involved in flavonoid biosynthesis and the alpha-linolenic acid metabolism pathway. These transcriptional and metabolite changes are potentially responsible for plant defense and a putative regulatory model is thus proposed to illustrate the cowpea defense mechanism against insect attack. Our study provides candidate targets for the breeding of varieties with resistance to insect herbivory by molecular technology.
Collapse
Affiliation(s)
- Tao Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingyue Feng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuanming Chi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xing Shi
- Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Zilin Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
7
|
Integrated Transcriptome and Metabolome Analysis to Identify Sugarcane Gene Defense against Fall Armyworm ( Spodoptera frugiperda) Herbivory. Int J Mol Sci 2022; 23:ijms232213712. [PMID: 36430189 PMCID: PMC9694286 DOI: 10.3390/ijms232213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Sugarcane is the most important sugar crop, contributing ≥80% to total sugar production around the world. Spodoptera frugiperda is one of the main pests of sugarcane, potentially causing severe yield and sugar loss. The identification of key defense factors against S. frugiperda herbivory can provide targets for improving sugarcane resistance to insect pests by molecular breeding. In this work, we used one of the main sugarcane pests, S. frugiperda, as the tested insect to attack sugarcane. Integrated transcriptome and metabolomic analyses were performed to explore the changes in gene expression and metabolic processes that occurred in sugarcane leaf after continuous herbivory by S. frugiperda larvae for 72 h. The transcriptome analysis demonstrated that sugarcane pest herbivory enhanced several herbivory-induced responses, including carbohydrate metabolism, secondary metabolites and amino acid metabolism, plant hormone signaling transduction, pathogen responses, and transcription factors. Further metabolome analysis verified the inducement of specific metabolites of amino acids and secondary metabolites by insect herbivory. Finally, association analysis of the transcriptome and metabolome by the Pearson correlation coefficient method brought into focus the target defense genes against insect herbivory in sugarcane. These genes include amidase and lipoxygenase in amino acid metabolism, peroxidase in phenylpropanoid biosynthesis, and pathogenesis-related protein 1 in plant hormone signal transduction. A putative regulatory model was proposed to illustrate the sugarcane defense mechanism against insect attack. This work will accelerate the dissection of the mechanism underlying insect herbivory in sugarcane and provide targets for improving sugarcane variety resistance to insect herbivory by molecular breeding.
Collapse
|
8
|
Bueno TV, Fontes PP, Abe VY, Utiyama AS, Senra RL, Oliveira LS, Brombini Dos Santos A, Ferreira EGC, Darben LM, de Oliveira AB, Abdelnoor RV, Whitham SA, Fietto LG, Marcelino-Guimarães FC. A Phakopsora pachyrhizi Effector Suppresses PAMP-Triggered Immunity and Interacts with a Soybean Glucan Endo-1,3-β-Glucosidase to Promote Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:779-790. [PMID: 35617509 DOI: 10.1094/mpmi-12-21-0301-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most important diseases affecting soybean production in tropical areas. During infection, P. pachyrhizi secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate P. pachyrhizi effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection. Here, we aimed to extend understanding of the pathogenic mechanisms of P. pachyrhizi based on the discovery of host proteins that interact with the effector candidate Phapa-7431740. We demonstrated that Phapa-7431740 suppresses pathogen-associated molecular pattern-triggered immunity (PTI) and that it interacts with a soybean glucan endo-1,3-β-glucosidase (GmβGLU), a pathogenesis-related (PR) protein belonging to the PR-2 family. Structural and phylogenetic characterization of the PR-2 protein family predicted in the soybean genome and comparison to PR-2 family members in Arabidopsis thaliana and cotton, demonstrated that GmβGLU is a type IV β-1,3-glucanase. Transcriptional profiling during an infection time course showed that the GmβGLU mRNA is highly induced during the initial hours after infection, coinciding with peak of expression of Phapa-7431740. The effector was able to interfere with the activity of GmβGLU in vitro, with a dose-dependent inhibition. Our results suggest that Phapa-7431740 may suppress PTI by interfering with glucan endo-1,3-β-glucosidase activity. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Thays V Bueno
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Patrícia P Fontes
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Valeria Y Abe
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
| | - Alice Satiko Utiyama
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Renato L Senra
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Liliane S Oliveira
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
- Department of Computer Science, Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Paraná 86300-000, Brazil
| | | | | | | | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Luciano G Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | | |
Collapse
|
9
|
Beyer SF, Bel PS, Flors V, Schultheiss H, Conrath U, Langenbach CJG. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci Rep 2021; 11:20600. [PMID: 34663865 PMCID: PMC8523552 DOI: 10.1038/s41598-021-00209-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hormones orchestrate the physiology of organisms. Measuring the activity of defense hormone-responsive genes can help understanding immune signaling and facilitate breeding for plant health. However, different from model species like Arabidopsis, genes that respond to defense hormones salicylic acid (SA) and jasmonic acid (JA) have not been disclosed in the soybean crop. We performed global transcriptome analyses to fill this knowledge gap. Upon exogenous application, endogenous levels of SA and JA increased in leaves. SA predominantly activated genes linked to systemic acquired resistance and defense signaling whereas JA mainly activated wound response-associated genes. In general, SA-responsive genes were activated earlier than those responding to JA. Consistent with the paradigm of biotrophic pathogens predominantly activating SA responses, free SA and here identified most robust SA marker genes GmNIMIN1, GmNIMIN1.2 and GmWRK40 were induced upon inoculation with Phakopsora pachyrhizi, whereas JA marker genes did not respond to infection with the biotrophic fungus. Spodoptera exigua larvae caused a strong accumulation of JA-Ile and JA-specific mRNA transcripts of GmBPI1, GmKTI1 and GmAAT whereas neither free SA nor SA-marker gene transcripts accumulated upon insect feeding. Our study provides molecular tools for monitoring the dynamic accumulation of SA and JA, e.g. in a given stress condition.
Collapse
Affiliation(s)
- Sebastian F Beyer
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Holger Schultheiss
- Agricultural Center, BASF Plant Science Company GmbH, 67117, Limburgerhof, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Caspar J G Langenbach
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Warsi MK, Howladar SM, Alsharif MA. Regulon: An overview of plant abiotic stress transcriptional regulatory system and role in transgenic plants. BRAZ J BIOL 2021; 83:e245379. [PMID: 34495147 DOI: 10.1590/1519-6984.245379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.
Collapse
Affiliation(s)
- M K Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - S M Howladar
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - M A Alsharif
- Architecture Department, Faculty of Engineering. Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
11
|
de Almeida Barros V, Fontes PP, Barcelos de Souza G, Gonçalves AB, de Carvalho K, Rincão MP, de Oliveira Negrão Lopes I, Dal-Bianco Lamas Costa M, Alves MS, Marcelino-Guimarães FC, Fietto LG. Phakopsora pachyrhizi triggers the jasmonate signaling pathway during compatible interaction in soybean and GmbZIP89 plays a role of major component in the pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:526-534. [PMID: 32305819 DOI: 10.1016/j.plaphy.2020.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The biotrophic fungus Phakopsora pachyrhizi is currently the major pathogen affecting soybean production worldwide. It has already been suggested for the non-host interaction between P. pachyrhizi and Arabidopsis thaliana that the fungus in early infection induces jasmonic acid (JA) pathway to the detriment of the salicylic acid (SA) pathway as a mechanism to the establishment of infection. In this study, we verified that this mechanism might also be occurring during the compatible interaction in soybean (Glycine max L. Merril). It was demonstrated that P. pachyrhizi triggers a JA pathway during the early and late stages of infection in a susceptible soybean cultivar. The expression of the GmbZIP89 was induced in a biphasic profile, similarly to other JA responsive genes, which indicates a new marker gene for this signaling pathway. Additionally, plants silenced for GmbZIP89 (iGmZIP89) by the virus-induced gene silencing (VIGS) approach present lower severity of infection and higher expression of pathogenesis related protein 1 (PR1). The lower disease severity showed that the iGmbZIP89 plants became more resistant to infection. These data corroborate the hypothesis that the GmbZIP89 may be a resistance negative regulator. In conclusion, we demonstrated that P. pachyrhizi mimics a necrotrophic fungus and activates the JA/ET pathway in soybean. It is possible to suppose that its direct penetration on epidermal cells or fungal effectors may modulate the expression of target genes aiming the activation of the JA pathway and inhibition of SA defense.
Collapse
Affiliation(s)
- Vanessa de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs S/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Patrícia Pereira Fontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs S/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Gilza Barcelos de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs S/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Amanda Bonoto Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs S/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Kenia de Carvalho
- Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | | | | | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs S/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Murilo Siqueira Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Avenida Humberto Monte S/N, Campus Pici, Fortaleza, CE, 60440-900, Brazil
| | | | - Luciano Gomes Fietto
- Molecular Biotechnology Laboratory, Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
13
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes (Basel) 2019; 10:E771. [PMID: 31575043 PMCID: PMC6827364 DOI: 10.3390/genes10100771] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Gezira 21111, Sudan.
| | - Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Souza GBD, Mendes TADO, Fontes PP, Barros VDA, Gonçalves AB, Ferreira TDF, Costa MDBL, Alves MS, Fietto LG. Genome-wide identification and expression analysis of dormancy-associated gene 1/auxin repressed protein (DRM1/ARP) gene family in Glycine max. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:134-141. [PMID: 30914276 DOI: 10.1016/j.pbiomolbio.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Abstract
Dormancy-Associated gene 1/Auxin Repressed protein (DRM1/ARP) genes are responsive to hormones involved in defense response to biotic stress, such as salicylic acid (SA) and methyl jasmonate (MeJA), as well as to hormones that regulate plant growth and development, including auxins. These characteristics suggest that this gene family may be an important link between the response to pathogens and plant growth and development. In this investigation, the DRM1/ARP genes were identified in the genome of four legume species. The deduced proteins were separated into three distinct groups, according to their sequence conservation. The expression profile of soybean genes from each group was measured in different organs, after treatment with auxin and MeJA and in response to the nematode Meloidogyne javanica. The results demonstrated that this soybean gene family is predominantly expressed in root. The time auxin takes to alter DRM1/ARP expression suggests that these genes can be classified as a late response to auxin. Nevertheless, only the groups 1 and 3 are induced in roots infected by M. javanica and only group 3 is induced by MeJA, which indicates a high level of complexity in expression control mechanisms of DRM1/ARP family in soybean.
Collapse
Affiliation(s)
- Gilza Barcelos de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Patrícia Pereira Fontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Vanessa de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Amanda Bonoto Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Thiago de Freitas Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Murilo Siqueira Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| | - Luciano Gomes Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
Hsieh JF, Chuah A, Patel HR, Sandhu KS, Foley WJ, Külheim C. Transcriptome Profiling of Melaleuca quinquenervia Challenged by Myrtle Rust Reveals Differences in Defense Responses Among Resistant Individuals. PHYTOPATHOLOGY 2018; 108:495-509. [PMID: 29135360 DOI: 10.1094/phyto-09-17-0307-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plants have developed complex defense mechanisms to protect themselves against pathogens. A wide-host-range fungus, Austropuccinia psidii, which has caused severe damage to ecosystems and plantations worldwide, is a major threat to Australian ecosystems dominated by members of the family Myrtaceae. In particular, the east coast wetland foundation tree species Melaleuca quinquenervia, appears to be variably susceptible to this pathogen. Understanding the molecular basis of host resistance would enable better management of this rust disease. We identified resistant and susceptible individuals of M. quinquenervia and explored their differential gene expression in order to discover the molecular basis of resistance against A. psidii. Rust screening of germplasm showed a varying degree of response, with fully resistant to highly susceptible individuals. We used transcriptome profiling in samples collected before and at 5 days postinoculation (dpi). Differential gene expression analysis showed that numerous defense-related genes were induced in susceptible plants at 5 dpi. Mapping reads against the A. psidii genome showed that only susceptible plants contained fungal-derived transcripts. Resistant plants exhibited an overexpression of candidate A. psidii resistance-related genes such as receptor-like kinases, nucleotide-binding site leucine-rich repeat proteins, glutathione S-transferases, WRKY transcriptional regulators, and pathogenesis-related proteins. We identified large differences in the expression of defense-related genes among resistant individuals.
Collapse
Affiliation(s)
- Ji-Fan Hsieh
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Aaron Chuah
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Hardip R Patel
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Karanjeet S Sandhu
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - William J Foley
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Carsten Külheim
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| |
Collapse
|
16
|
Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS One 2016; 11:e0165823. [PMID: 27829044 PMCID: PMC5102369 DOI: 10.1371/journal.pone.0165823] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
Bean (Phaseolus vulgaris) anthracnose caused by the hemi-biotrophic pathogen Colletotrichum lindemuthianum is a major factor limiting production worldwide. Although sources of resistance have been identified and characterized, the early molecular events in the host-pathogen interface have not been investigated. In the current study, we conducted a comprehensive transcriptome analysis using Illumina sequencing of two near isogenic lines (NILs) differing for the presence of the Co-1 gene on chromosome Pv01 during a time course following infection with race 73 of C. lindemuthianum. From this, we identified 3,250 significantly differentially expressed genes (DEGs) within and between the NILs over the time course of infection. During the biotrophic phase the majority of DEGs were up regulated in the susceptible NIL, whereas more DEGs were up-regulated in the resistant NIL during the necrotrophic phase. Various defense related genes, such as those encoding PR proteins, peroxidases, lipoxygenases were up regulated in the resistant NIL. Conversely, genes encoding sugar transporters were up-regulated in the susceptible NIL during the later stages of infection. Additionally, numerous transcription factors (TFs) and candidate genes within the vicinity of the Co-1 locus were differentially expressed, suggesting a global reprogramming of gene expression in and around the Co-1 locus. Through this analysis, we reduced the previous number of candidate genes reported at the Co-1 locus from eight to three. These results suggest the dynamic nature of P. vulgaris-C. lindemuthianum interaction at the transcriptomic level and reflect the role of both pathogen and effector triggered immunity on changes in plant gene expression.
Collapse
Affiliation(s)
- Bilal A. Padder
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Kelvin Kamfwa
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Halima E. Awale
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - James D. Kelly
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| |
Collapse
|
17
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
18
|
Langenbach C, Campe R, Beyer SF, Mueller AN, Conrath U. Fighting Asian Soybean Rust. FRONTIERS IN PLANT SCIENCE 2016; 7:797. [PMID: 27375652 PMCID: PMC4894884 DOI: 10.3389/fpls.2016.00797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/22/2016] [Indexed: 05/18/2023]
Abstract
Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Ruth Campe
- BASF Plant Science Company GmbHLimburgerhof, Germany
| | | | - André N. Mueller
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|