1
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025; 36:162-182. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
2
|
Wu J, Zhai J, Jia H, Ahamba IS, Dong X, Ren Z. Whole-transcriptome analysis reveals the profiles and roles of coding and non-coding RNAs during hair follicle cycling in Rex rabbits. BMC Genomics 2025; 26:74. [PMID: 39863835 PMCID: PMC11765939 DOI: 10.1186/s12864-025-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown. RESULTS In this study, we identified the hair follicle stages of Rex rabbits aged 3 to 5.5 months. Skin samples collected at 4, 5 and 5.5 months, representing the morphological features of the anagen, catagen and telogen stage separately, were finally selected for whole-transcriptome analysis. 25,736 mRNA, 8280 lncRNA, 24,885 circRNA and 1138 miRNA transcripts were identified. 6027 differently expressed mRNAs (DEGs), 2381 differently expressed lncRNAs (DELs), 438 differently expressed circRNAs (DECs) and 167 differently expressed miRNAs (DEMs) were detected in the anagen vs. catagen (AvC) comparison. 4092 DEGs, 1540 DELs, 356 DECs and 141 DEMs were detected in the anagen vs. telogen (AvT) comparison. 2290 DEGs, 779 DELs, 249 DECs and 92 DEMs were detected in the catagen vs. telogen (CvT) comparison. DEGs were primarily enriched in GO items including plasma membrane, integral component of plasma membrane and extracellular space. KEGG enrichment analysis revealed that DEGs were mainly enriched in PI3K-Akt signaling pathway, cell cycle and Wnt signaling pathway (p < 0.05). KEGG analysis showed trans-acting genes of DELs were significantly enriched in Hippo signaling pathway, PI3K-Akt signaling pathway and Melanogenesis. Target genes of DEMs were mainly enriched in MAPK signaling pathway, Wnt signaling pathway, ECM-receptor interaction and Signaling pathways regulating pluripotency of stem cells. Based on the ceRNA mechanism, lncRNA/circRNA-miRNA-mRNA networks were constructed involving 9 DECs, 437 DELs, 50 DEMs and 416 DEGs. CONCLUSIONS Totally, this study provides comprehensive insights into the expression patterns of protein-coding genes and non-coding transcripts throughout the HF cycle, and enhancing the understanding of the regulatory mechanisms underlying mammalian hair fiber development.
Collapse
Affiliation(s)
- Jie Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haofan Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Sun Q, Li Y, Yang W, Feng W, Zhou J, Cao Y, Zhang B, Zhu Z, Han C. CircMYH9/miR-133a-3p/CXCR4 axis: a novel regulatory network in sperm fertilization and embryo development. MOLECULAR BIOMEDICINE 2024; 5:69. [PMID: 39671083 PMCID: PMC11645365 DOI: 10.1186/s43556-024-00236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
This study aimed to investigate the influence of sperm miRNAs on fertilization rates (FR) in in vitro fertilization (IVF) and to explore potential regulatory mechanisms in sperm-mediated fertilization and embryo development. Through high-throughput sequencing, we identified differentially expressed miRNAs in sperm, with miR-133a-3p significantly upregulated in samples associated with low FR and available embryo rate (AER). Key regulatory circRNAs and mRNAs were further identified via the Starbase database, intersected with differentially expressed RNA, and analyzed through GO, KEGG, and PPI analyses. The circMYH9/miR-133a-3p/CXCR4 axis emerged as a critical regulatory network. In vitro assays using the GC-2 spd mouse spermatogenic cell line revealed that miR-133a-3p inhibited cell growth and proliferation while promoting apoptosis. circMYH9, acting as a competing endogenous RNA (ceRNA) for miR-133a-3p, modulated CXCR4 expression, enhancing GC-2 spd cell growth and inhibiting apoptosis through the miR-133a-3p/CXCR4 axis. In vivo experiments using a mouse model confirmed that circMYH9 overexpression increased IVF success rates and promoted embryo development via this axis. Mechanistically, miR-133a-3p suppresses sperm fertilization and embryo development by targeting the circMYH9/miR-133a-3p/CXCR4 axis. These findings suggest that this regulatory network could serve as a novel biomarker for assessing fertilization potential and embryo quality in clinical settings and as a potential therapeutic target to improve IVF outcomes and address infertility. This study provides valuable insights into the molecular mechanisms governing sperm function and early embryonic development.
Collapse
Affiliation(s)
- Qian Sun
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Yanyu Li
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China
| | - Wen Yang
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Wen Feng
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, China
| | - Jiayun Zhou
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China
| | - Yijuan Cao
- Department of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bei Zhang
- Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China.
- Department of Gynecology, Xuzhou Central Hospital, No. 199, South Jiefang Road, Quanshan District, Xuzhou, 221009, China.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Conghui Han
- Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, 221009, China.
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China.
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
- Department of Urology, Heilongjiang Provincial Hospital, Harbin, 150006, China.
| |
Collapse
|
4
|
Hai E, Wang C, Wu Z. Exosomes serve as a crucial mediator of epithelial-fibroblast communication during hair follicle morphogenesis in cashmere goats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101357. [PMID: 39546929 DOI: 10.1016/j.cbd.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The formation of dermal condensates (DCs) through fibroblasts is a pivotal event in hair follicle morphogenesis in cashmere goats, a process that intricately involves epithelial-fibroblast communication. Exosomes (Exos), as essential mediators of intercellular communication, have garnered increasing attention in recent years, yet their precise role in hair follicle morphogenesis remains largely unknown. In this study, we focused on isolating and identifying epithelial cell-derived exosomes (Epi-Exos) from Inner Mongolian cashmere goats. Our experiments demonstrated that Epi-Exos could efficiently enter fibroblasts within 12 h of co-culture. Both direct co-culture of epithelial cells with fibroblasts and co-culture with Epi-Exos alone revealed that Epi-Exos promoted fibroblast migration while inhibiting their proliferation, changes that mirror the cellular biological characteristics observed during DC formation. Furthermore, recognizing the abundance of miRNAs carried by Exos, we conducted small RNA sequencing (small RNA-seq) on Epi-Exos. This analysis identified a panel of 54 highly expressed miRNAs within the Epi-Exos, 34 of which were also found to be abundant in fetal skin tissues of Inner Mongolian cashmere goats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these miRNAs were significantly enriched in cellular processes and signaling pathways related to hair follicle morphogenesis. Notably, our findings offer new perspectives on the role of miRNAs in Epi-Exos regulating DC formation and hair follicle morphogenesis in cashmere goats, with significant implications for understanding hair follicle development mechanisms and potential clinical or production benefits, including improved cashmere quality and yield through targeted exosome-mediated signaling manipulation.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - ChangShou Wang
- Department of Agriculture, Hetao College, Bayannur 015000, Inner Mongolia, China.
| | - Zhihong Wu
- Department of Agriculture, Hetao College, Bayannur 015000, Inner Mongolia, China.
| |
Collapse
|
5
|
Li J, Xing W, Gegen T, Zhang C, Ren Y, Yang C. Effect of Fasted Live-Weight Gain during the Cashmere Non-Growing Period on Cashmere Production Performance and Secondary Hair Follicle Activity of Cashmere Goats. Animals (Basel) 2023; 13:3519. [PMID: 38003137 PMCID: PMC10668669 DOI: 10.3390/ani13223519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to investigate the effects of fasted live-weight gain during the cashmere non-growing period on cashmere production performance and secondary hair follicle activity, to provide a theoretical basis for appropriate supplementary feeding of cashmere goats. Fifty Inner Mongolian cashmere goats aged 2-4 years old were randomly selected and weighed in May and September 2019, respectively. Based on fasted live-weight gain between the two weights, the experimental ewe goats were divided into two groups: 0-5.0 kg group (n = 30) and 5.0-10.0 kg group (n = 20). Skin samples and cashmere samples were collected. Results of a Pearson correlation analysis showed that fasted live-weight gain during the cashmere non-growing period had a moderate and strong positive correlation with cashmere yield (p = 0.021) and cashmere staple length (p = 0.002), respectively, but did not correlate with cashmere diameter (p = 0.254). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had a 17.10% increase in cashmere yield (p = 0.037) and an 8.09% increase in cashmere staple length (p = 0.045), but had no significant difference in cashmere diameter (p = 0.324). Results of a Pearson correlation analysis showed that there was a strong positive correlation between fasted live-weight gain and the population of active secondary hair follicles in the skin of cashmere goats (p < 0.01). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had an increase in the population of active secondary hair follicles (p < 0.05). In conclusion, the fasted live-weight gain during the cashmere non-growing period had a significant effect on secondary hair follicle activity and cashmere production performance in cashmere goats. Since fasted live-weight gain reflects nutritional level to a certain extent, this study suggests that nutritional manipulations such as supplementary feeding during cashmere non-growing periods can increase cashmere production performance. However, specific nutritional manipulations during the cashmere non-growing period need further research to increase cashmere production performance.
Collapse
Affiliation(s)
- Junxia Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (J.L.); (W.X.); (C.Z.)
| | - Wenhui Xing
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (J.L.); (W.X.); (C.Z.)
| | - Tana Gegen
- Agriculture and Animal Husbandry Bureau of Linxi County, Linxi 025250, China;
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (J.L.); (W.X.); (C.Z.)
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (J.L.); (W.X.); (C.Z.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030801, China
| | - Chunhe Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (J.L.); (W.X.); (C.Z.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030801, China
| |
Collapse
|
6
|
Gao Y, Song W, Hao F, Duo L, Zhe X, Gao C, Guo X, Liu D. Effect of Fibroblast Growth Factor 10 and an Interacting Non-Coding RNA on Secondary Hair Follicle Dermal Papilla Cells in Cashmere Goats' Follicle Development Assessed by Whole-Transcriptome Sequencing Technology. Animals (Basel) 2023; 13:2234. [PMID: 37444032 DOI: 10.3390/ani13132234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Cashmere, a keratinised product of secondary hair follicles (SHFs) in cashmere goats, holds an important place in international high-end textiles. However, research on the complex molecular and signal regulation during the development and growth of hair follicles (HFs), which is essential for the development of the cashmere industry, is limited. Moreover, increasing evidence indicates that non-coding RNAs (ncRNAs) participate in HF development. Herein, we systematically investigated a competing endogenous RNA (ceRNA) regulatory network mediated by circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in skin samples of cashmere goat embryos, using whole-transcriptome sequencing technology. We obtained 6468, 394, and 239 significantly differentially expressed mRNAs, circRNAs, and miRNAs, respectively. These identified RNAs were further used to construct a ceRNA regulatory network, mediated by circRNAs, for cashmere goats at a late stage of HF development. Among the molecular species identified, miR-184 and fibroblast growth factor (FGF) 10 exhibited competitive targeted interactions. In secondary HF dermal papilla cells (SHF-DPCs), miR-184 promotes proliferation, inhibits apoptosis, and alters the cell cycle via the competitive release of FGF10. This study reports that FGF10 and its interaction with ncRNAs significantly affect SHF-DPCs, providing a reference for research on the biology of HFs in cashmere goats and other mammals.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Weiguo Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Duo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunyan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
7
|
He X, Tian M, Wang W, Feng Y, Li Z, Wang J, Song Y, Zhang J, Liu D. Identification of Candidate Genes for Min Pig Villi Hair Traits by Genome-Wide Association of Copy Number Variation. Vet Sci 2023; 10:vetsci10050307. [PMID: 37235390 DOI: 10.3390/vetsci10050307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Min pig is a famous native pig breed in northeast China, which has the special genetic character of villi hair growth in cold seasons. At present, little research has focused on the genetic mechanism of villi hair growth in Min pigs. Copy number variations (CNVs) are a type of variant that may influence many traits. In this study, we first investigated the phenotype of Large White × Min pigs' F2 pig villi hair in detail and then performed a CNV-based genome-wide association study (GWAS) between CNVs and pig villi hair appearance. Finally, a total number of 15 significant CNVRs were found to be associated with Min pig villi hair. The most significant CNVR was located on chromosome 1. Nearest gene annotation analysis indicated that the pig villi hair traits may be associated with the biological process of the G-protein-coupled receptor signaling pathway. QTL overlapping analysis found that among the CNVRs, 14 CNVRs could be co-located with known QTLs. Some genes such as MCHR2, LTBP2, and GFRA2 may be candidate genes for pig villi traits and are worth further study. Our study may provide a basic reference for the selection and breeding of cold-resistant pigs and outdoor breeding.
Collapse
Affiliation(s)
- Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yanzhong Feng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jiahui Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Yan Song
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jinfeng Zhang
- Harbin Academy of Agricultural Sciences, Harbin 150029, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
8
|
Ying P, Xu Y, Jiang X, Wang K, Xue Y, Wang Q, Ding W, Dai X. Analysis of the regulatory role of miR-34a-5p/PLCD3 in the progression of osteoarthritis. Funct Integr Genomics 2023; 23:131. [PMID: 37079115 DOI: 10.1007/s10142-023-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Osteoarthritis is a heterogeneous disease with a complex etiology. However, there is no effective treatment strategy at present. The purpose of this study was to explore the miRNA‒mRNA regulatory network and molecular mechanism that regulate the progression of osteoarthritis. In this article, we downloaded datasets (GSE55457, GSE82107, GSE143514 and GSE55235) from Gene Expression Omnibus (GEO) to screen differentially expressed mRNAs in osteoarthritis. Then, through weighted gene coexpression network (WGCNA), functional enrichment, protein‒protein interaction (PPI) network, miRNA‒mRNA coexpression network, ROC curve, and immune infiltration analyses and qPCR, the mRNA PLCD3, which was highly expressed in osteoarthritis and had clinical predictive value, was screened. We found that PLCD3 directly targets miR-34a-5p through DIANA and dual-luciferase experiments. The expression levels of PLCD3 and miR-34a-5p were negatively correlated. In addition, CCK-8 and wound healing assays showed that the miR-34a-5p mimic inhibited hFLS-OA cell proliferation and promoted hFLS-OA cell migration. PLCD3 overexpression showed the opposite trend. Western blotting further found that overexpression of miR-34a-5p reduced the protein expression levels of p-PI3K and p-AKT, while overexpression of PLCD3 showed the opposite trend. In addition, combined with the effect of the PI3K/AKT pathway inhibitor BIO (IC50 = 5.95 μM), the results showed that overexpression of miR-34a-5p increased the inhibitory effects of BIO on p-PI3K and p-AKT protein expression, while overexpression of PLCD3 significantly reversed these inhibitory effects. Overall, the miR-34a-5p/PLCD3 axis may mediate the PI3K/AKT pathway in regulating cartilage homeostasis in synovial osteoarthritis. These data indicate that miR-34a-5p/PLCD3 may be a new prognostic factor in the pathology of synovial osteoarthritis.
Collapse
Affiliation(s)
- Pu Ying
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Kejie Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Xue
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wenge Ding
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Dai
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
9
|
RNA-Seq Reveals the Roles of Long Non-Coding RNAs (lncRNAs) in Cashmere Fiber Production Performance of Cashmere Goats in China. Genes (Basel) 2023; 14:genes14020384. [PMID: 36833312 PMCID: PMC9956036 DOI: 10.3390/genes14020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA being >200 nucleotides in length, and they are found to participate in hair follicle growth and development and wool fiber traits regulation. However, there are limited studies reporting the role of lncRNAs in cashmere fiber production in cashmere goats. In this study, Liaoning cashmere (LC) goats (n = 6) and Ziwuling black (ZB) goats (n = 6) with remarkable divergences in cashmere yield, cashmere fiber diameter, and cashmere color were selected for the construction of expression profiles of lncRNAs in skin tissue using RNA sequencing (RNA-seq). According to our previous report about the expression profiles of mRNAs originated from the same skin tissue as those used in the study, the cis and trans target genes of differentially expressed lncRNAs between the two caprine breeds were screened, resulting in a lncRNA-mRNA network. A total of 129 lncRNAs were differentially expressed in caprine skin tissue samples between LC goats and ZB goats. The presence of 2 cis target genes and 48 trans target genes for the differentially expressed lncRNAs resulted in 2 lncRNA-cis target gene pairs and 93 lncRNA-trans target gene pairs. The target genes concentrated on signaling pathways that were related to fiber follicle development, cashmere fiber diameter, and cashmere fiber color, including PPAR signaling pathway, metabolic pathways, fatty acid metabolism, fatty acid biosynthesis, tyrosine metabolism, and melanogenesis. A lncRNA-mRNA network revealed 22 lncRNA-trans target gene pairs for seven differentially expressed lncRNAs selected, of which 13 trans target genes contributed to regulation of cashmere fiber diameter, while nine trans target genes were responsible for cashmere fiber color. This study brings a clear explanation about the influences of lncRNAs over cashmere fiber traits in cashmere goats.
Collapse
|
10
|
Wu C, Yuan L, Cao W, Ye X, Ma X, Qin C, Li B, Yu F, Fu X. Regulation of secondary hair follicle cycle in cashmere goats by miR-877-3p targeting IGFBP5 gene. J Anim Sci 2023; 101:skad314. [PMID: 37777862 PMCID: PMC10583983 DOI: 10.1093/jas/skad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Cashmere, a highly valuable animal product derived from cashmere goats, holds significant economic importance. MiRNAs serve as crucial regulators in the developmental processes of mammalian hair follicles. Understanding the regulation of miRNAs during the hair follicle cycle is essential for enhancing cashmere quality. In this investigation, we employed high-throughput sequencing technology to analyze the expression profiles of miRNAs in the secondary hair follicles of Jiangnan cashmere goats at different stages. Through bioinformatics analysis, we identified differentially expressed miRNAs (DE miRNAs). The regulatory relationships between miRNAs and their target genes were verified using multiple techniques, including RT-qPCR, western blot, Dual-Luciferase Reporter, and CKK-8 assays. Our findings revealed the presence of 193 DE miRNAs during various stages of the hair follicle cycle in Jiangnan cashmere goats. Based on the previously obtained mRNA data, the target genes of DE miRNA were predicted, and 1,472 negative regulatory relationships between DE miRNAs and target genes were obtained. Notably, the expression of chi-miR-877-3p was down-regulated during the telogen (Tn) phase compared to the anagen (An) and catagen (Cn) phases, while the IGFBP5 gene exhibited up-regulation. Further validation experiments confirmed that overexpression of chi-miR-877-3p in dermal papilla cells suppressed IGFBP5 gene expression and facilitated cell proliferation. The results of this study provide novel insights for analyzing the hair follicle cycle.
Collapse
Affiliation(s)
- Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Liang Yuan
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Fei Yu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang Urumqi, China
| |
Collapse
|
11
|
Wu X, Wang J, Kang Y, Wang Q, Qu J, Sun X, Ji D, Li Y. Regulation of Proliferation and Apoptosis of Hair Follicle Stem Cells by miR-145-5p in Yangtze River Delta White Goats. Genes (Basel) 2022; 13:1973. [PMID: 36360210 PMCID: PMC9689699 DOI: 10.3390/genes13111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2024] Open
Abstract
Yangtze River Delta white goats are the sole goat breed producing brush hair of high quality. The gene DUSP6 has been extensively studied in tumor cells but rarely in hair follicle stem cells (HFSCs). Per the previous sequencing data, it was determined that DUSP6 expression was up-regulated in superior-quality brush hair tissues, confirming it as a candidate gene associated with this trait. The targeting relationship of miR-145-5p with DUSP6 was determined based on online database prediction and was authenticated using a dual-luciferase gene reporter assay and quantitative reverse-transcription PCR (RT-qPCR). The regulatory effect of miR-145-5p on the growth of HFSCs was determined by targeting DUSP6 with RT-qPCR, 5-ethynyl-2'-deoxyuridine assays, Western blotting, and flow cytometry. The proliferation of HFSCs was inhibited and their apoptosis capacity was enhanced due to the presence of miR-145-5p. Therefore, it was proposed that this may have occurred through a repression effect of DUSP6 on the MAPK signaling pathway. The regulatory network of the HFSCs can be further understood using the theoretical basis established by the findings derived from this study.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Kang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Shang F, Ma R, Rong Y, Pan J, Wang M, Niu S, Qi Y, Li Y, Wang Z, Lv Q, Wang R, Su R, Liu Z, Zhao Y, Wang Z, Li J, Zhang Y. Construction and functional analysis of ceRNA regulatory network related to the development of secondary hair follicles in Inner Mongolia cashmere goats. Front Vet Sci 2022; 9:959952. [PMID: 36090177 PMCID: PMC9453165 DOI: 10.3389/fvets.2022.959952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cashmere goat hair follicles are divided into primary hair follicles and secondary hair follicles. The primary hair follicles produce coarse hair, and the secondary hair follicles produce cashmere. The development of hair follicles is affected by a variety of signaling molecules and pathways. Studies have shown that non-coding RNAs are widely involved in the development of hair follicles of the goat, including small RNAs (miRNAs), long non-coding RNAs (lncRNA), and circular RNAs (circRNAs). In recent years, circRNAs, as a new type of circular closed non-coding RNAs, have attracted great attention due to their high stability. However, its regulatory effect on cashmere goat hair follicles mainly focuses on the periodic regulation of secondary hair follicles, and there is no report on the development of cashmere goat hair follicles during the fetal period. Therefore, this study was based on the circRNA, miRNA, and mRNA expression profiles obtained by whole-transcriptional sequencing of the skin tissue of the Inner Mongolia cashmere goats in the fetal period (days 45, 55, 65, and 75) and screening out the morphological changes of hair follicles at different periods. A total of 113 circRNAs related to the development of secondary hair follicles were present. According to the principle of the ceRNA regulatory network, a ceRNA regulatory network composed of 13 circRNAs, 21 miRNAs, and 110 mRNAs related to the development of secondary hair follicles was constructed. Then, qRT-PCR and Sanger sequencing identified circRNA2034, circRNA5712, circRNA888, and circRNA9127 were circRNAs. Next, the dual-luciferase reporter gene verified the targeting relationship of circRNA5712-miR-27b-3p-Dll4. In conclusion, this study constructed a ceRNA regulatory network for the development of cashmere goat secondary hair follicles, laying a foundation for the analysis of circRNAs regulating the morphogenesis and development of cashmere goat secondary hair follicles through the ceRNA mechanism.
Collapse
Affiliation(s)
- Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuran Niu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yanjun Zhang
| |
Collapse
|