1
|
Kanesada G, Tsunedomi R, Nakagami Y, Matsui H, Shindo Y, Tomochika S, Akita H, Ioka T, Takahashi H, Nagano H. The C11orf24 Gene as a Useful Biomarker for Predicting Severe Neutropenia in Modified FOLFIRINOX for Pancreatic Cancer. Cancer Sci 2025. [PMID: 40285634 DOI: 10.1111/cas.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal tumor with a poor prognosis. FOLFIRINOX improves the prognosis of patients with PC; however, despite UGT1A1 screening, adverse events, such as severe neutropenia, occur frequently. This study aimed to identify the novel biomarkers of severe neutropenia in patients treated with modified FOLFIRINOX (mFFX) for PC. In this study, patients with PC treated with mFFX (n = 71) and gemcitabine plus nab-paclitaxel (GnP) (n = 92) and patients with colorectal cancer treated with FOLFOXIRI (n = 50) were included. Genome-wide screening using whole-exome sequencing was performed during the screening phase. Validation analysis was performed using polymerase chain reaction genotyping, the Cochran-Armitage trend test, and multivariate analysis. The diagnostic performance of combined risk factors for severe neutropenia was examined using logistic regression with leave-one-out cross-validation. Three gene polymorphisms were selected from the screening phase and subjected to the validation phase. In the validation phase, a single nucleotide polymorphism in C11orf24 (c.448C>T, rs901827) was significantly correlated with ≥ Grade 3 neutropenia in mFFX and FOLFOXIRI but not in GnP. Multivariate analysis showed C11orf24 and baseline neutrophil count as independent risk factors for ≥ Grade 3 neutropenia. The diagnostic performance of the neutropenia prediction model showed areas under the curve of 0.754 (sensitivity = 0.605, specificity = 0.848) and 0.856 (sensitivity = 0.800, specificity = 0.893) for ≥ Grade 3 and 4 neutropenia, respectively. The C11orf24 gene and baseline neutrophil count may be useful biomarkers for predicting severe neutropenia following irinotecan-containing triplet chemotherapy.
Collapse
Affiliation(s)
- Gen Kanesada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Data Science Laboratory, Faculty of Data Science, Shimonoseki City University, Shimonoseki, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hirofumi Akita
- Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
2
|
Wang F, Li H, Zhang J, Fan J, Xu J. A comprehensive analysis of the expression and the prognosis for LOX-1 in multiple cancer types. Biotechnol Genet Eng Rev 2024; 40:2346-2368. [PMID: 37078456 DOI: 10.1080/02648725.2023.2199477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Lectin-likeoxidized low-density lipoprotein receptor (LOX-1) has been identified to beinvolved in the development of atherosclerosis. There is an increasing experimental evidence which indicated that LOX-1 was implicated in cancer tumorigenesis. However, the expression and the prognostic value of LOX-1 in multiple cancers still require the further analysis. Pubmed, Embase and the Cochrane Library were used for the literature review collection with the confined date up to 31 December 2021. Ten studies including 1982 patients were performed in meta-analysis according to the inclusion and exclusion criteria. Oncomine, Gene Expression Profiling Interactive Analysis(GEPIA), Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) were utilized to analyze the differential expression and the prognostic value of LOX-1 in different cancers. Records from Gene Expression Omnibus (GEO) database were applied for the verification test. The meta-pooled result demonstrated that elevated LOX-1 predicted a poor survival in some cancers (HR = 1.95, 95%CI 1.46-2.44, P < 0.001). In this sense, further analysis using databases found the expression of LOX-1 was higher in breast cancer, colorectal cancer, gastric cancer and pancreatic cancer while the lower expression in lung squamous cell carcinoma was observed. Moreover, the expression of LOX-1 was related to the tumor stages of colorectal cancer, gastric cancer and pancreatic cancer. The survival analysis revealed that LOX-1 was a potential prognostic factor for the patients with colorectal cancer, gastric cancer, pancreatic cancer and lung squamous cell carcinoma. Consequently, this study may provide a novel insight for the expression and the prognostic value of LOX-1 in specific cancers.
Collapse
Affiliation(s)
- Feiyang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Akkuş M, Solak H. Elevated levels of oxLDL and LOX-1: Implications for schizophrenia pathophysiology. J Psychiatr Res 2024; 177:140-146. [PMID: 39013288 DOI: 10.1016/j.jpsychires.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Inflammation and oxidative stress are both considered to be factors in the etiopathogenesis of schizophrenia. LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) and ox-LDL (oxidized low-density lipoprotein) have been reported to be active in neuroinflammation pathways in which they are involved in oxidative stress and inflammation. However, its relationship with schizophrenia is unclear. This study aimed to assess the potential connection between serum ox-LDL and LOX-1 levels in schizophrenia patients, their unaffected first-degree relatives, and healthy controls. The study comprised 63 schizophrenia patients, 57 first-degree relatives, and 63 healthy controls who were age, gender, and BMI-matched. Serum ox-LDL and LOX-1 levels were measured. PANSS was used to assess the severity of the disease. Levels of both ox-LDL and LOX-1 were markedly elevated in individuals diagnosed with schizophrenia when compared to both their relatives and a control group. While ox-LDL levels were significantly higher in relatives of patients compared to controls, there was no significant difference between relatives of patients and control groups for LOX-1 levels. Significant correlations were observed between PANNS general and total and ox-LDL levels and PANNS negative and LOX-1 levels. The relationship between ox-LDL and LOX-1 and schizophrenia is quite limited in the literature and is a new field of study. Future studies are needed to evaluate their role in etiopathogenesis.
Collapse
Affiliation(s)
- Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Faculty of Medicine, Vefa Alayunt Street, 43100, Kutahya Province, Kütahya, Turkey.
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kütahya Health Science University, Evliya Çelebi Campus, Tavşanlı Road 10th Km, 43100, Kutahya Province, Kütahya, Turkey.
| |
Collapse
|
4
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tan C, Li Y, Wang K, Lin Y, Chen Y, Zheng X. Causal roles and clinical utility of cardiovascular proteins in colorectal cancer risk: a multi-modal study integrating mendelian randomization, expression profiling, and survival analysis. BMC Med Genomics 2024; 17:138. [PMID: 38778378 PMCID: PMC11110250 DOI: 10.1186/s12920-024-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE This comprehensive investigation delved into the intricate causal interplay existing between cardiovascular-related plasma proteins and the susceptibility to colorectal cancer, leveraging the robust framework of Mendelian randomization, and employed expression profiling and survival analysis to unravel the latent clinical worth embedded within pertinent gene expressions. METHODS Protein quantitative trait loci (pQTLs) of 85 cardiovascular proteins were employed as instrumental variables to investigate the causal relationship between proteins and CRC risk using a Mendelian randomization approach. Causal inferences were graded as strong, intermediate or weak based on statistical checks. Drug-target MR examined VEGF receptors for their potential as therapeutic targets for colorectal cancer. Differential expression analysis, diagnostic ROC curves, and survival analyses were performed for identified proteins using RNA-seq data from The Cancer Genome Atlas (TCGA) colorectal cancer cohort. RESULTS Using cis-pQTLs, LOX-1, VEGF-A and OPG were associated with increased CRC risk (strong evidence), while PTX3, TNF-R2 and MMP-7 were protective (strong evidence). Pan-pQTL analysis found MMP-10 increased risk (intermediate evidence) and ADM increased risk (weak evidence). Drug-target MR found VEGF R1 may be promising therapeutic targets. Differential expression analysis revealed seven genes encoding the identified proteins were dysregulated in tumors. ROC analysis showed five gene expression had high diagnostic accuracy. KM analysis showed four genes had prognostic value. CONCLUSIONS This large-scale MR study implicates several cardiovascular proteins in CRC susceptibility and progression. Findings highlight roles for VEGF signaling and extracellular matrix regulation. Results nominate specific proteins as potential diagnostic biomarkers or therapeutic targets warranting further investigation.
Collapse
Affiliation(s)
- Chenlei Tan
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Yanhua Li
- General Practice Department at the Second Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, P. R. China.
| | - Kexin Wang
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Ying Lin
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Yu Chen
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Xuebao Zheng
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| |
Collapse
|
6
|
Furuya K, Nakajima M, Tsunedomi R, Nakagami Y, Xu M, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Tomochika S, Maeda N, Iida M, Suzuki N, Takeda S, Hazama S, Ioka T, Hoshii Y, Ueno T, Nagano H. High serum proteinase-3 levels predict poor progression-free survival and lower efficacy of bevacizumab in metastatic colorectal cancer. BMC Cancer 2024; 24:165. [PMID: 38308214 PMCID: PMC10835931 DOI: 10.1186/s12885-024-11924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To improve the prognosis of patients with metastatic colorectal cancer (mCRC), investigating predictive biomarkers of their prognosis and chemotherapeutic responsiveness is necessary. This study aimed to analyze the clinical significance of serum proteinase-3 (PRTN3) as a predictor for prognosis and chemosensitivity, especially to bevacizumab therapy, in mCRC. METHODS This single-center retrospective observational study enrolled 79 patients with mCRC in our hospital and 353 patients with colorectal cancer in the TCGA database. Preoperative serum PRTN3 levels were measured using an enzyme-linked immunosorbent assay. The clinicopathological characteristics and prognosis according to serum PRTN3 levels were then evaluated. PRTN3 expression in tumor and stromal cells was evaluated immunohistochemically. The impact of PRTN3 levels on angiogenesis and bevacizumab sensitivity was evaluated using the tube formation assay. RESULTS Serum PRTN3 levels were an independent poor prognostic factor for progression-free survival (PFS) (hazard ratio, 2.082; 95% confidence interval, 1.118-3.647; P=0.010) in patients with mCRC. Similarly, prognostic analysis with TCGA data sets showed poorer overall survival in patients with PRTN3 expression than that in patients without PRTN3 expression, especially in patients with stage IV. Immunohistochemical analysis of resected specimens revealed that stromal neutrophils expressed PRTN3, and their expression level was significantly correlated with serum PRTN3 levels. Interestingly, the effectiveness of first-line chemotherapy was significantly poorer in the high serum PRTN3 level group. High serum PRTN3 was significantly associated with poor PFS (hazard ratio, 3.027; 95% confidence interval, 1.175-7.793; P=0.0161) in patients treated with bevacizumab, an anti-angiogenic inhibitor. The tube formation assay revealed that PRTN3 administration notably augmented angiogenesis while simultaneously attenuating the anti-angiogenic influence exerted by bevacizumab therapy. CONCLUSIONS Serum PRTN3 levels could be a novel predictive biomarker of PFS of first-line chemotherapy, especially for bevacizumab therapy, in patients with mCRC.
Collapse
Affiliation(s)
- Kei Furuya
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
7
|
Sampaio-Ribeiro G, Ruivo A, Silva A, Santos AL, Oliveira RC, Gama J, Cipriano MA, Tralhão JG, Paiva A. Innate Immune Cells in the Tumor Microenvironment of Liver Metastasis from Colorectal Cancer: Contribution to a Comprehensive Therapy. Cancers (Basel) 2023; 15:3222. [PMID: 37370832 DOI: 10.3390/cancers15123222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent type of cancer, and liver metastasis is the most common site of metastatic development. In the tumor microenvironment (TME), various innate immune cells are known to influence cancer progression and metastasis occurrence. CD274 (PD-L1) and CD206 (MRC1) are proteins that have been associated with poor prognosis and disease progression. We conducted a study on tumoral and non-tumoral biopsies from 47 patients with CRC liver metastasis, using flow cytometry to phenotypically characterize innate immune cells. Our findings showed an increase in the expression of CD274 on classical, intermediate, and non-classical monocytes when comparing tumor with non-tumor samples. Furthermore, tumor samples with a desmoplastic growth pattern exhibited a significantly decreased percentage of CD274- and CD206-positive cells in all monocyte populations compared to non-desmoplastic samples. We found a correlation between a lower expression of CD206 or CD274 on classical, intermediate, and non-classical monocytes and increased disease-free survival, which points to a better prognosis for these patients. In conclusion, our study has identified potential new targets and biomarkers that could be incorporated into a personalized medicine approach to enhance the outcome for colorectal cancer patients.
Collapse
Affiliation(s)
- Gabriela Sampaio-Ribeiro
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ruivo
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Ana Lúcia Santos
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, 3000-377 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Augusta Cipriano
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
8
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
9
|
Li X, Wang Z, Jiao C, Zhang Y, Xia N, Yu W, Chen X, Wikana LP, Liu Y, Sun L, Chen M, Xiao Y, Shi Y, Han S, Pu L. Hepatocyte SGK1 activated by hepatic ischemia-reperfusion promotes the recurrence of liver metastasis via IL-6/STAT3. J Transl Med 2023; 21:121. [PMID: 36788538 PMCID: PMC9926712 DOI: 10.1186/s12967-023-03977-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Surgical resection of the liver metastases increases the incidence of long-term survival in patients with colorectal liver metastasis (CRLM). However, many patients experience CRLM recurrence after the initial liver resection. As an unavoidable pathophysiological process in liver surgery, liver ischemia-reperfusion (IR) injury increases the risk of tumor recurrence and metastasis. METHODS Colorectal liver metastasis (CRLM) mouse models and mouse liver partial warm ischemia models were constructed. The levels of lipid peroxidation were detected in cells or tissues. Western Blot, qPCR, elisa, immunofluorescence, immunohistochemistry, scanning electron microscope, flow cytometry analysis were conducted to evaluate the changes of multiple signaling pathways during CRLM recurrence under liver ischemia-reperfusion (IR) background, including SGK1/IL-6/STAT3, neutrophil extracellular traps (NETs) formation, polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) infiltration. RESULTS Hepatocyte serum/glucocorticoid regulated kinase 1 (SGK1) was activated in response to hepatic ischemia-reperfusion injury to pass hepatocyte STAT3 phosphorylation and serum amyloid A (SAA) hyperactivation signals in CRLM-IR mice, such regulation is dependent on SGK-activated IL-6 autocrine. Administration of the SGK1 inhibitor GSK-650394 further reduced ERK-related neutrophil extracellular traps (NETs) formation and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) infiltration compared with targeting hepatocyte SGK1 alone, thereby alleviating CRLM in the context of IR. CONCLUSIONS Our study demonstrates that hepatocyte and immune cell SGK1 synergistically promote postoperative CRLM recurrence in response to hepatic IR stress, and identifies SGK1 as a translational target that may improve postoperative CRLM recurrence.
Collapse
Affiliation(s)
- Xiangdong Li
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyu Jiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yu Zhang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenjie Yu
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuejiao Chen
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Likalamu Pascalia Wikana
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yue Liu
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Linfeng Sun
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhao Xiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
10
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Expression of Serum sLOX-1 in Patients with Non-Small-Cell Lung Cancer and Its Correlation with Lipid Metabolism. Can Respir J 2022; 2022:6619331. [PMID: 35449557 PMCID: PMC9017481 DOI: 10.1155/2022/6619331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 11/05/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The aim of this study was to investigate the expression level of soluble LOX-1 (sLOX-1) in the serum of non-small-cell lung cancer (NSCLC) patients and its correlation with lipid metabolism. Methods 99 inpatients with NSCLC and 81 healthy controls were enrolled in this study. The levels of serum sLOX-1 were compared between the two groups, and the correlation of sLOX-1 with clinicopathological characteristics, blood lipid indices, and carcinoembryonic antigen was analyzed. Results Compared with the healthy controls, sLOX-1, low-density lipoprotein, triglyceride, and carcinoembryonic antigen in the patients with NSCLC were significantly higher (p < 0.05), while the expression level of high-density lipoprotein was lower (p < 0.05). The expression level of sLOX-1 in the serum of patients with healthy controls was positively correlated with low-density lipoprotein (r = 0.72, p < 0.05). The levels of sLOX-1 and low-density lipoprotein in the serum of patients with NSCLC were closely related to the lymph node metastasis, distant metastasis, and TNM stage (p < 0.05). Compared with a single index, when the sLOX-1 was combined with the CEA, its specificity increased significantly to 97.5% (AUC = 0.995, p < 0.01, 95% CI: 0.989–1.000). Conclusion sLOX-1 and low-density lipoprotein were overexpressed in the serum of patients with NSCLC, positively correlated, and closely related to the TNM stage and metastasis. This result suggested that lipid metabolic disorders may promote the progression of NSCLC through sLOX-1, which could be a potential serological marker with diagnostic value for NSCLC.
Collapse
|
12
|
Mohamadzaheri M, Cheraghi H, Shirani D, Hatamkhani A. Relationship between plasma cell-free DNA changes and lysyl oxidase during the treatment and prognosis of canine transmissible venereal tumors. BMC Vet Res 2022; 18:76. [PMID: 35189882 PMCID: PMC8862336 DOI: 10.1186/s12917-022-03173-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transmissible venereal tumors (TVT) are a wide range of canine tumors for which there are no effective markers to monitor the therapeutic response in real-time. Circulating biomarkers can be valuable in early cancer diagnosis and prognosis. Accordingly, this study aimed to investigate the significance of the cell-free DNA (cfDNA) and cfDNA integrity index to monitor the response of TVTs to vincristine and compare them with lysyl oxidase activity. Plasma and sera were collected from fifteen male dogs within four weeks before drug administration. The analytical method was mainly based on the quantitative polymerase chain reaction (qPCR) technique for short and long cfDNAs and lysyl oxidase activity was measured in serum. Results The results of the cfDNA integrity index showed a significant (p < 0.05) difference in the baseline concentration compared to the second and third weeks (with cut-off values of 1.118 and 93.33% specificity). The cfDNA integrity index increased over time due to the reduction of short cfDNAs in the first week after treatment. Lysyl oxidase activity increased during the fourth week (p < 0.001), but there were no significant differences in the other weeks compared to the baseline. The ROC analysis of lysyl oxidase revealed high sensitivity (100%) and specificity (90%) on the second and third weeks compared to the baseline. Multivariate analysis between cfDNA integrity index and lysyl oxidase showed significant correlation (p < 0.05) only in baseline results. Conclusions Overall, short cfDNA, the cfDNA integrity index, and lysyl oxidase activity can be proposed as diagnostic biomarkers and putative prognostic candidates in TVT patients. These biomarkers can be combined with cytology to quickly diagnose TVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03173-z.
Collapse
Affiliation(s)
- Mona Mohamadzaheri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Hadi Cheraghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Darioush Shirani
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
13
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
14
|
Knockdown of OLR1 weakens glycolytic metabolism to repress colon cancer cell proliferation and chemoresistance by downregulating SULT2B1 via c-MYC. Cell Death Dis 2021; 13:4. [PMID: 34921134 PMCID: PMC8683511 DOI: 10.1038/s41419-021-04174-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Chemoresistance is one of the major problems of colon cancer treatment. In tumors, glycolytic metabolism has been identified to promote cell proliferation and chemoresistance. However, the molecular mechanisms underlying glycolytic metabolism and chemoresistance in colon cancer remains enigmatic. Hence, this research was designed to explore the mechanism underlying the OLR1/c-MYC/SULT2B1 axis in the regulation of glycolytic metabolism, to affect colon cancer cell proliferation and chemoresistance. Colon cancer tissues and LoVo cells were attained, where OLR1, c-MYC, and SULT2B1 expression was detected by immunohistochemistry, RT-qPCR, and western blot analysis. Next, ectopic expression and knockdown assays were implemented in LoVo cells. Cell proliferation was detected by MTS assay and clone formation. Extracellular acidification, glucose uptake, lactate production, ATP/ADP ratio, and GLUT1 and LDHA expression were measured to evaluate glycolytic metabolism. Then, the transfected cells were treated with chemotherapeutic agents to assess drug resistance by MTS experiments and P-gp and SMAD4 expression by RT-qPCR. A nude mouse model of colon cancer transplantation was constructed for in vivo verification. The levels of OLR1, c-MYC, and SULT2B1 were upregulated in colon cancer tissues and cells. Mechanistically, OLR1 increased c-MYC expression to upregulate SULT2B1 in colon cancer cells. Moreover, knockdown of OLR1, c-MYC, or SULT2B1 weakened glycolytic metabolism, proliferation, and chemoresistance of colon cancer cells. In vivo experiments authenticated that OLR1 knockdown repressed the tumorigenesis and chemoresistance in nude mice by downregulating c-MYC and SULT2B1. Conclusively, knockdown of OLR1 might diminish SULT2B1 expression by downregulating c-MYC, thereby restraining glycolytic metabolism to inhibit colon cancer cell proliferation and chemoresistance.
Collapse
|
15
|
Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, Sangiuolo F. LOX-1 and cancer: an indissoluble liaison. Cancer Gene Ther 2021; 28:1088-1098. [PMID: 33402733 PMCID: PMC8571092 DOI: 10.1038/s41417-020-00279-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Recently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial-mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/β-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies.
Collapse
Affiliation(s)
- M Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.
| | - C De Masi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - S Pucci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - R Mango
- Cardiology Unit, Department of Emergency and Critical Care, Tor Vergata Hospital, Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - C Di Natale
- Department of Electronic Engineering, Tor Vergata University, Rome, Italy
| | - F Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
16
|
Zhang CJ, Zhu N, Wang YX, Liu LP, Zhao TJ, Wu HT, Liao DF, Qin L. Celastrol Attenuates Lipid Accumulation and Stemness of Clear Cell Renal Cell Carcinoma via CAV-1/LOX-1 Pathway. Front Pharmacol 2021; 12:658092. [PMID: 33935779 PMCID: PMC8085775 DOI: 10.3389/fphar.2021.658092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by abnormal lipid accumulation. Celastrol is a pentacyclic triterpene extracted from Tripterygium wilfordii Hook F with anti-cancer activity. In the present study, the anticancer effects of celastrol on ccRCC and the underlying mechanisms were studied. Patients with reduced high density lipoprotein (HDL) and elevated levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL) was found to have higher risk of ccRCC. In ccRCC clinical samples and cell lines, caveolin-1 (CAV-1) was highly expressed. CAV-1 was identified as a potential prognostic biomarker for ccRCC. Celastrol inhibited tumor growth and decreased lipid deposition promoted by high-fat diet in vivo. Celastrol reduced lipid accumulation and caveolae abundance, inhibited the binding of CAV-1 and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in ccRCC cells. Furthermore, celastrol attenuated stemness through blocking Wnt/β-catenin pathway after knockdown of CAV-1 and LOX-1. Therefore, the findings suggest that celastrol may be a promising active ingredient from traditional Chinese medicine for anti-cancer therapy.
Collapse
Affiliation(s)
- Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Le-Ping Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Katayama C, Yokobori T, Ozawa N, Suga K, Shiraishi T, Okada T, Osone K, Katoh R, Suto T, Motegi Y, Ogawa H, Sano A, Sakai M, Sohda M, Erkhem-Ochir B, Gombodorj N, Katayama A, Oyama T, Shirabe K, Kuwano H, Saeki H. Low level of stromal lectin-like oxidized LDL receptor 1 and CD8 + cytotoxic T-lymphocytes indicate poor prognosis of colorectal cancer. Cancer Rep (Hoboken) 2021; 4:e1364. [PMID: 33675293 PMCID: PMC8388181 DOI: 10.1002/cnr2.1364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lectin‐like oxidized LDL receptor‐1 (LOX‐1) has been identified as a new marker for functional myeloid‐derived suppressor cells (MDSCs) that exhibit an immunosuppressive phenotype in the tumor microenvironment (TME). However, the role of LOX‐1+ cells in the TME of colorectal cancer (CRC) remains unknown. Aim This study aimed to determine the expression and significance of LOX‐1 in the TME of clinical CRC specimens. Methods and results We performed immunohistochemical and genetic analyses of LOX‐1, CD8, KRAS, and BRAF in 128 resected CRC specimens and determined the expression of IFN‐γ and IL‐10 using real‐time reverse transcription‐polymerase chain reaction. We analyzed the correlation between LOX‐1, TME factors, gene alteration, clinicopathological factors, and disease prognosis. The co‐expression pattern of LOX‐1, hematopoietic markers, and a fibroblast marker was evaluated using multiplex immunofluorescence staining. Low stromal LOX‐1 expression and low intratumoral CD8+ cytotoxic T‐lymphocyte (CTL) status correlated with poor prognosis. Moreover, stromal LOX‐1‐low/CD8+ CTL‐low status was the most important independent prognostic factor of poor overall survival. Most of the LOX‐1+ stromal cells were positive for CD163+, indicating they were CD163+ M2 macrophages. Conclusions The MDSC marker, LOX‐1, was mainly expressed by M2 macrophages in CRC tissues. LOX‐1+ macrophages and CD8+ CTLs may serve as useful biomarkers for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Chika Katayama
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunihiko Suga
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryuji Katoh
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshinaga Suto
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoko Motegi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Bilguun Erkhem-Ochir
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Navchaa Gombodorj
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan.,Department of Radiation Oncology, National Cancer Center, Ulaanbaatar, Mongolia
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
18
|
Yamada K, Hazama S, Suzuki N, Xu M, Nakagami Y, Fujiwara N, Tsunedomi R, Yoshida S, Tomochika S, Matsukuma S, Matsui H, Tokumitsu Y, Kanekiyo S, Shindo Y, Watanabe Y, Iida M, Takeda S, Ioka T, Ueno T, Ogihara H, Hamamoto Y, Hoshii Y, Kawano H, Fujita T, Kawakami Y, Nagano H. Siglec-7 is a predictive biomarker for the efficacy of cancer vaccination against metastatic colorectal cancer. Oncol Lett 2020; 21:10. [PMID: 33240416 PMCID: PMC7681234 DOI: 10.3892/ol.2020.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy, including vaccination, is considered a major scientific and medical breakthrough. However, cancer immunotherapy does not result in durable objective responses against colorectal cancer (CRC). To improve the efficacy of immunotherapy, the present study investigated several biomarkers for selecting patients who were expected to respond well to immunotherapy. Firstly, a comprehensive proteomic analysis was performed using tumor tissue lysates from patients enrolled in a phase II study, in which five human leukocyte antigen (HLA)-A*24:02-restricted peptides were administered. Sialic acid-binding immunoglobulin type lectin (Siglec)-7 was identified as a potential predictive biomarker. Subsequently, this biomarker was validated using western blot analysis, and immunofluorescence using tissue samples from the patients enrolled in the phase II study. The expression levels of Siglec-7 detected by immunofluorescence were quantified and their association with overall survival (OS) in patients treated with the peptide vaccine was examined. Furthermore, considering the important role of tumor-infiltrating lymphocytes (TILs) for CRC prognosis, the densities of CD3+, CD4+, CD8+ and forkhead box P3 (FOXP3)+ T cells in CRC tissues were examined and compared with Siglec-7 expression. The mean expression levels of Siglec-7 were significantly higher in patients with poor prognosis, with an OS of ≤2 years, as shown in comprehensive proteomic analysis (P=0.016) and western blot analysis (P=0.025). Immunofluorescence analysis demonstrated that Siglec-7 was expressed in intratumoral macrophages. The OS in patients with high Siglec-7 expression was significantly shorter than in that in patients with low Siglec-7 expression (P=0.017) in the HLA-A*24:02-matched patients. However, this difference was not observed in the HLA-unmatched patients. There was no significant difference in OS between patients according to the numbers of TILs, nor significant correlation between TILs and Siglec-7 expression. In conclusion, Siglec-7 expression in macrophages in tumor tissue may be a novel predictive biomarker for the efficacy of immunotherapy against metastatic CRC.
Collapse
Affiliation(s)
- Kensuke Yamada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Nobuyuki Fujiwara
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shinsuke Kanekiyo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Tomio Ueno
- Department of Gastroenterological Surgery, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Hiroyuki Ogihara
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Yoshihiko Hamamoto
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Hiroo Kawano
- Department of Basic Laboratory Sciences, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
19
|
Sun Y, Tian H, Xu X, Wang L. Low expression of adenomatous polyposis coli 2 correlates with aggressive features and poor prognosis in colorectal cancer. Bioengineered 2020; 11:1027-1033. [PMID: 32951505 PMCID: PMC8291837 DOI: 10.1080/21655979.2020.1820823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Currently, there are no relevant findings on the diagnostic and prognostic roles of adenomatous polyposis coli 2 (APC2) in colorectal cancer (CRC). This study investigated the clinical value of APC2 dysregulation in the prognosis of CRC. Immunohistochemical scores obtained from tissue microarrays were used to quantify the expression of APC2 protein in 201 CRC tissues and 139 adjacent normal tissues. A chi-squared test was performed to analyze the association between APC2 expression and various clinical characteristics. Differences in 5-year survival between groups were analyzed. A receiver operating characteristic (ROC) curve was generated to investigate the potential association between APC2 and CRC diagnosis. Compared with adjacent normal tissues, APC2 was downregulated in CRC tissues (P = 0.0004). Survival analyses revealed that CRC patients with high APC2 expression (96.74%) obtained better 5-year survival rates than those with low APC2 expression (88.07%). CRC patients with low APC2 expression exhibited obvious lymphovascular invasion (P = 0.010), lymph node metastasis (P = 0.007), and high tumor node metastasis (TNM) stage (P = 0.007). Furthermore, ROC curves confirmed that APC2 was associated with lymphovascular invasion (P = 0.004), lymph node metastasis (P = 0.002), and TNM staging (P = 0.002). In summary, low APC2 expression in CRC tissues was associated with poor prognosis and may be a useful biomarker for the prognosis and clinical classification of CRC.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Hua Tian
- Department of Gastroenterology, Houjie Hospital Affiliated to Guangdong Medical College , Dongguan, China
| | - Xuehu Xu
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Lin Wang
- Department of Oncology, Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou, China
| |
Collapse
|