1
|
Collins VG, Kanodia C, Yahya QB, Liistro M, Kaliaperumal C. 5-Aminolevulinic acid (5-ALA) in paediatric brain tumour surgery-a systematic review and exploration of fluorophore alternatives. Childs Nerv Syst 2025; 41:150. [PMID: 40178625 DOI: 10.1007/s00381-025-06810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Paediatric brain tumours represent the most common solid malignancies in children, with extent of resection being a critical prognostic factor. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is well-established for adult high-grade gliomas, but its efficacy and safety in paediatric populations remain unclear. This systematic review evaluates the utility of 5-ALA fluorescence-guided surgery in paediatric brain tumours and explores alternative fluorophores. METHODS A systematic review was conducted according to PRISMA guidelines, analysing studies from MEDLINE and EMBASE published up to October 2024. Data on patient demographics, tumour fluorescence patterns, surgical outcomes, and adverse effects were extracted. Statistical analyses assessed fluorescence differences across tumour types and administration parameters. RESULTS Twenty-three studies, including 281 paediatric patients (mean age, 10 years), were analysed. The most common tumours included pilocytic astrocytomas (n = 45), medulloblastomas (n = 45), glioblastomas (n = 35), and ependymomas (n = 27). Strong fluorescence was observed more frequently in high-grade gliomas compared to low-grade gliomas (p < 0.00001), non-glioma tumours (p < 0.00001), and high-grade non-glioma tumours (p = 0.000485). Adverse effects were mostly transient; rare complications included transaminitis and dermatologic reactions. CONCLUSION 5-ALA fluorescence-guided surgery shows promise in the resection of high-grade gliomas in paediatric patients, improving intraoperative visualisation. However, limited fluorescence in low-grade and non-glioma tumours underscores the need for tumour-specific approaches. Emerging alternatives, such as fluorescein sodium and tozuleristide, offer potential advantages. Future research should focus on optimising 5-ALA dosing, refining timing protocols, and conducting robust prospective trials to establish efficacy and safety in paediatric populations.
Collapse
Affiliation(s)
- Victoria G Collins
- Department of Neurosurgery, Royal Hospital for Children and Young People, Edinburgh, UK.
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Ninewells Hospital, Dundee, UK.
| | - Charvi Kanodia
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | | | - Marianna Liistro
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Chandrasekaran Kaliaperumal
- Department of Neurosurgery, Royal Hospital for Children and Young People, Edinburgh, UK
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci 2024; 39:266. [PMID: 39477891 DOI: 10.1007/s10103-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body. Fluorescence diagnostic methods have shown that sublingual administration of 5-ALA leads to the more intense accumulation of PpIX in a tumor compared to oral administration. Differences have been identified in the dynamics of 5-ALA-induced PpIX and Ce6 accumulation in the central and border zones of the tumor, as well as normal tissues. Ce6 accumulates mainly in the central zone of the tumor while PpIX accumulates in the border zone of the tumor. All patients with combined PDT experienced complete therapeutic pathomorphosis and relapse-free observation.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute, Moscow, Russian Federation.
- Moscow Engineering Physics Institute, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | - Victor Loschenov
- Prokhorov General Physics Institute, Moscow, Russian Federation
- Moscow Engineering Physics Institute, Moscow, Russian Federation
| |
Collapse
|
3
|
Bassler MC, Hiller J, Wackenhut F, Zur Oven-Krockhaus S, Frech P, Schmidt F, Kertzscher C, Rammler T, Ritz R, Braun K, Scheele M, Meixner AJ, Brecht M. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chem Biol 2024; 5:d4cb00107a. [PMID: 39421718 PMCID: PMC11474773 DOI: 10.1039/d4cb00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant primary brain tumors are a group of highly aggressive and often infiltrating tumors that lack adequate therapeutic treatments to achieve long time survival. Complete tumor removal is one precondition to reach this goal. A promising approach to optimize resection margins and eliminate remaining infiltrative so-called guerilla cells is photodynamic therapy (PDT) using organic photosensitizers that can pass the disrupted blood-brain-barrier and selectively accumulate in tumor tissue. Hypericin fulfills these conditions and additionally offers outstanding photophysical properties, making it an excellent choice as a photosensitizing molecule for PDT. However, the actual hypericin-induced PDT cell death mechanism is still under debate. In this work, hypericin-induced PDT was investigated by employing the three distinct fluorescent probes hypericin, resorufin and propidium iodide (PI) in fluorescence-lifetime imaging microscopy (FLIM). This approach enables visualizing the PDT-induced photodamaging and dying of single, living glioma cells, as an in vitro tumor model for glioblastoma. Hypericin PDT and FLIM image acquisition were simultaneously induced by 405 nm laser irradiation and sequences of FLIM images and fluorescence spectra were recorded to analyze the PDT progression. The reproducibly observed cellular changes provide insight into the mechanism of cell death during PDT and suggest that apoptosis is the initial mechanism followed by necrosis after continued irradiation. These new insights into the mechanism of hypericin PDT of single glioma cells may help to adjust irradiation doses and improve the implementation as a therapy for primary brain tumors.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jonas Hiller
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Frank Wackenhut
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| | - Sven Zur Oven-Krockhaus
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Philipp Frech
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Felix Schmidt
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christoph Kertzscher
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Tim Rammler
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Rainer Ritz
- Department of Neurosurgery, Schwarzwald-Baar Clinic 78052 Villingen-Schwenningen Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
4
|
Bader N, Peschmann C, Kast RE, Heiland T, Merz T, McCook O, Alfieri A, Karpel-Massler G, Capanni F, Halatsch ME. Globus Lucidus: A porcine study of an intracranial implant designed to deliver closed, repetitive photodynamic and photochemical therapy in glioblastoma. Photodiagnosis Photodyn Ther 2024; 46:104059. [PMID: 38548041 DOI: 10.1016/j.pdpdt.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Herein we describe initial results in a porcine model of a fully implantable device designed to allow closed, repetitive photodynamic treatment of glioblastoma (GBM). METHODS This implant, Globus Lucidus, is a transparent quartz glass sphere with light-emitting diodes releasing wavelengths of 630 nm (19.5 mW/cm2), 405 nm (5.0 mW/cm2) or 275 nm (0.9 mW/cm2). 5-aminolevulinic acid was the photosensitizing prodrug chosen for use with Globus Lucidus, hence the implants illuminated at 630 nm or 405 nm. An additional 275 nm wavelength-emittance was included to explore the effects of photochemical therapy (PCT) by ultraviolet (UV) light. Twenty healthy domestic pigs underwent right-frontal craniotomies. The Globus Lucidus device was inserted into a surgically created right-frontal lobe cavity. After postoperative recovery, irradiation for up to 30 min daily for up to 14 d, or continuous irradiation for up to 14.6 h was conducted. RESULTS Surgery, implants, and repeated irradiations using the different wavelengths were generally well tolerated. Social behavior, wound healing, body weight, and temperature remained unaffected. Histopathological analyses revealed consistent leukocyte infiltration around the intracerebral implant sites with no significant differences between experimental and control groups. CONCLUSION This Globus Lucidus porcine study prepares the groundwork for adjuvant, long-term, repeated PDT of the GBM infiltration zone. This is the first report of a fully implantable PDT/PCT device for the potential treatment of GBM. A preclinical effectivity study of Globus Lucidus PDT/PCT is warranted and in advanced stages of planning.
Collapse
Affiliation(s)
- Nicolas Bader
- Biomechatronics Research Group, Ulm University of Applied Sciences, Ulm, Germany
| | - Christian Peschmann
- Department of Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | | | - Tim Heiland
- Spine Center Lake Constance, Meckenbeuren, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland; Advanced Treatment Concepts against Glioblastoma (ATCG), Kreuzlingen, Switzerland
| | | | - Felix Capanni
- Biomechatronics Research Group, Ulm University of Applied Sciences, Ulm, Germany
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland; Advanced Treatment Concepts against Glioblastoma (ATCG), Kreuzlingen, Switzerland.
| |
Collapse
|
5
|
Walke A, Krone C, Stummer W, König S, Suero Molina E. Protoporphyrin IX in serum of high-grade glioma patients: A novel target for disease monitoring via liquid biopsy. Sci Rep 2024; 14:4297. [PMID: 38383693 PMCID: PMC10881484 DOI: 10.1038/s41598-024-54478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
High-grade gliomas (HGG) carry a dismal prognosis. Diagnosis comprises MRI followed by histopathological evaluation of tissue; no blood biomarker is available. Patients are subjected to serial MRIs and, if unclear, surgery for monitoring of tumor recurrence, which is laborious. MRI provides only limited diagnostic information regarding the differentiation of true tumor progression from therapy-associated side effects. 5-aminolevulinic acid (5-ALA) is routinely used for induction of protoporphyrin IX (PpIX) accumulation in malignant glioma tissue, enabling improved tumor visualization during fluorescence-guided resection (FGR). We investigated whether PpIX can also serve as a serum HGG marker to monitor relapse. Patients (HGG: n = 23 primary, pHGG; n = 5 recurrent, rHGG) undergoing FGR received 5-ALA following standard clinical procedure. The control group of eight healthy volunteers (HCTR) also received 5-ALA. Serum was collected before and repeatedly up to 72 h after drug administration. Significant PpIX accumulation in HGG was observed after 5-ALA administration (ANOVA: p = 0.005, post-hoc: HCTR vs. pHGG p = 0.029, HCTR vs. rHGG p = 0.006). Separation of HCTR from pHGG was possible when maximum serum PpIX levels were reached (CI95% of tMax). ROC analysis of serum PpIX within CI95% of tMax showed successful classification of HCTR and pHGG (AUCROC 0.943, CI95% 0.884-1.000, p < 0.001); the optimal cut-off for diagnosis was 1275 pmol PpIX/ml serum, reaching 87.0% accuracy, 90.5% positive predictive and 84.0% negative predictive value. Baseline PpIX level was similar in patient and control groups. Thus, 5-ALA is required for PpIX induction, which is safe at the standard clinical dosage. PpIX is a new target for liquid biopsy in glioma. More extensive clinical studies are required to characterize its full potential.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany.
| | - Christopher Krone
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
6
|
Lai HW, Tani Y, Sukatta U, Rugthaworn P, Thepyos A, Yamamoto S, Fukuhara H, Inoue K, Yuasa H, Nakamura H, Ogura SI. Mangostin enhances efficacy of aminolevulinic acid-photodynamic therapy against cancer through inhibition of ABCG2 activity. Photodiagnosis Photodyn Ther 2023; 44:103798. [PMID: 37696317 DOI: 10.1016/j.pdpdt.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aminolevulinic acid-photodynamic therapy (ALA-PDT) is gaining attention as a potential method for treating select cancers due to its high specificity and low side effect feature. ALA enters cancer cells and accumulate as protoporphyrin IX (PpIX), which will then trigger phototoxicity following light irradiation. However, it is reported that some cancer cells have reduced efficacy of ALA-PDT due to high expression of ABCG2, a transporter involved in the PpIX efflux. In this study, we evaluated the effect of mangostin, a natural compound containing anti-tumor property, on the efficacy of ALA-PDT against cancer and the mechanism involved. METHODS We utilized TMK1 gastric cancer cell line, which has high ABCG2 expression, to evaluate the PpIX accumulation and phototoxicity exerted by ALA and mangostin co-addition. RESULTS We found that co-addition of ALA and mangostin significantly increase the phototoxicity and PpIX accumulation in TMK1 cells. We also investigated the effect of mangostin on porphyrin-heme pathway enzymes and ABCG2 and found that the addition of mangostin reduce the activity of ABCG2, reducing PpIX efflux. CONCLUSION These findings suggest that mangostin enhances the efficacy of ALA-PDT in cancer through inhibition of ABCG2 activity.
Collapse
Affiliation(s)
- Hung Wei Lai
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Yukitaka Tani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Udomlak Sukatta
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand.
| | - Prapassorn Rugthaworn
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand
| | - Asada Thepyos
- Quality Plus Biomedtech Co., Ltd. Headquarter: fl. 25, Jasmine International Tower, Chaeng Wattana road, Pak Kret district, Nonthaburi 11120 Thailand
| | - Shinkuro Yamamoto
- Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan.
| |
Collapse
|
7
|
Ibarra AMC, Aguiar EMG, Ferreira CBR, Siqueira JM, Corrêa L, Nunes FD, Franco ALDS, Cecatto RB, Hamblin MR, Rodrigues MFSD. Photodynamic therapy in cancer stem cells - state of the art. Lasers Med Sci 2023; 38:251. [PMID: 37919479 DOI: 10.1007/s10103-023-03911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.
Collapse
Affiliation(s)
- Ana Melissa C Ibarra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | | | - Cássia B R Ferreira
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | | | - Luciana Corrêa
- School of Dentistry, University of São Paulo - FOUSP, São Paulo, Brazil
| | - Fabio D Nunes
- School of Dentistry, University of São Paulo - FOUSP, São Paulo, Brazil
| | | | - Rebeca B Cecatto
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Maria Fernanda S D Rodrigues
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil.
| |
Collapse
|
8
|
Lai HW, Yamamoto S, Fukuhara H, Ogura SI, Inoue K. Cell senescence-associated porphyrin metabolism affects the efficacy of aminolevulinic acid-photodynamic diagnosis in bladder cancer. Photodiagnosis Photodyn Ther 2023; 42:103581. [PMID: 37116819 DOI: 10.1016/j.pdpdt.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Aminolevulinic acid-photodynamic diagnosis (ALA-PDD) is a promising alternative method to detect cancer cells because of its high specificity and low rate of side effects. Exogenous ALA is administered and accumulates as protoporphyrin IX (PpIX) in cancer cells, which then emit red fluorescence following light irradiation to enable surgeons to accurately identify and remove cancerous tissue. Recent reports suggested that PpIX failed to accumulate in some patients who underwent ALA-PDD. We hypothesized that cell senescence, which is a relatively inactive state, affects porphyrin accumulation in bladder cancer cells. In this study, we evaluated the relationship between cell senescence and porphyrin accumulation in affecting the efficacy of ALA-PDD. First, we utilized three bladder cancer cell lines to evaluate senescence-related indicators and establish a cell senescence model. Then, we identified the differences in porphyrin production and the proteins involved in porphyrin accumulation between old and young cells. We found that compared with young cells, old cells possessed higher concentration of PpIX and had lower ABCG2 expression. The increase in PpIX levels following ABCG2 inhibition is three times higher in old cells than in young cells, suggesting that cell senescence was closely related with porphyrin accumulation in cancer. In conclusion, we found that the efficacy of ALA-PDD and porphyrin accumulation was relatively high in senescent cancer cells and that inhibition of ABCG2 could improve the efficacy of ALA-PDD in young bladder cancer cells.
Collapse
Affiliation(s)
- Hung Wei Lai
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan.
| | - Shinkuro Yamamoto
- Department of Urology, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan; Department of Urology, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan; Department of Urology, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
9
|
Nara E, Lai HW, Imazato H, Ishizuka M, Nakajima M, Ogura SI. Suppression of angiotensin converting enzyme 2, a host receptor for SARS-CoV-2 infection, using 5-aminolevulinic acid in vitro. PLoS One 2023; 18:e0281399. [PMID: 36757984 PMCID: PMC9910746 DOI: 10.1371/journal.pone.0281399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2), an entry receptor found on the surface of host cells, is believed to be detrimental to the infectious capability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Scientists have been working on finding a cure since its outbreak with limited success. In this study, we evaluated the potential of 5-aminolevulinic acid hydrochloride (ALA) in suppressing ACE2 expression of host cells. ACE2 expression and the production of intracellular porphyrins following ALA administration were carried out. We observed the reduction of ACE2 expression and intracellular porphyrins following ALA administration. ALA suppressed the ACE2 expression in host cells which might prevent binding of SARS-CoV-2 to host cells. Co-administration of ALA and sodium ferrous citrate (SFC) resulted in a further decrease in ACE2 expression and increase in intracellular heme level. This suggests that the suppression of ACE2 expression by ALA might occur through heme production. We found that the inhibition of heme oxygenase-1 (HO-1), which is involved in heme degradation, also resulted in decrease in ACE2 expression, suggesting a potential role of HO-1 in suppressing ACE2 as well. In conclusion, we speculate that ALA, together with SFC administration, might serve as a potential therapeutic approach in reducing SARS-CoV-2 infectivity through suppression of ACE2 expression.
Collapse
Affiliation(s)
- Eriko Nara
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hung Wei Lai
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- * E-mail: (SIO); (HWL)
| | - Hideo Imazato
- SBI Pharmaceuticals Co. Ltd., Minato-ku, Tokyo, Japan
| | | | | | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- * E-mail: (SIO); (HWL)
| |
Collapse
|
10
|
Kiening M, Lange N. A Recap of Heme Metabolism towards Understanding Protoporphyrin IX Selectivity in Cancer Cells. Int J Mol Sci 2022; 23:ijms23147974. [PMID: 35887311 PMCID: PMC9324066 DOI: 10.3390/ijms23147974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of proteins. These complexes are termed hemoproteins and are usually vital to the whole cell comportment, such as the proteins hemoglobin, myoglobin or cytochromes, but also enzymes such as catalase and peroxidases. The building block of porphyrins is the 5-aminolevulinic acid, whose exogenous administration is able to stimulate the entire heme biosynthesis route. In neoplastic cells, this methodology repeatedly demonstrated an accumulation of the ultimate heme precursor, the fluorescent protoporphyrin IX photosensitizer, rather than in healthy tissues. While manifold players have been proposed, numerous discrepancies between research studies still dispute the mechanisms underlying this selective phenomenon that yet requires intensive investigations. In particular, we wonder what are the respective involvements of enzymes and transporters in protoporphyrin IX accretion. Is this mainly due to a boost in protoporphyrin IX anabolism along with a drop of its catabolism, or are its transporters deregulated? Additionally, can we truly expect to find a universal model to explain this selectivity? In this report, we aim to provide our peers with an overview of the currently known mitochondrial heme metabolism and approaches that could explain, at least partly, the mechanism of protoporphyrin IX selectivity towards cancer cells.
Collapse
Affiliation(s)
| | - Norbert Lange
- Correspondence: ; Tel.: +41-22-379-33-35; Fax: +41-22-379-65-67
| |
Collapse
|
11
|
Schary N, Novak B, Kämper L, Yousf A, Lübbert H. Identification and pharmacological modification of resistance mechanisms to protoporphyrin-mediated photodynamic therapy in human cutaneous squamous cell carcinoma cell lines. Photodiagnosis Photodyn Ther 2022; 39:103004. [PMID: 35811052 DOI: 10.1016/j.pdpdt.2022.103004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is clinically approved to treat neoplastic skin diseases such as precursors of cutaneous squamous cell carcinoma (cSCC). In PDT, 5-aminolevulinic acid (5-ALA) drives the selective formation of the endogenous photosensitizer protoporphyrin IX (PpIX). Although 5-ALA PDT is clinically highly effective, resistance might occur due to decreased accumulation of PpIX in certain tumors. Such resistance may be caused by any fundamental step of PpIX accumulation: 5-ALA uptake, PpIX synthesis and PpIX efflux. METHODS We investigated PpIX accumulation and photodynamically induced cell death in PDT refractory SCC-13, PDT susceptible A431, and normal human epidermal keratinocytes (NHEK). Expression of genes associated with cellular PpIX kinetics was investigated on mRNA and protein level. PpIX accumulation and cell death upon illumination were pharmacologically manipulated using drugs targeting 5-ALA uptake, PpIX synthesis or efflux. RESULTS The experiments indicate that taurine transporter (SLC6A6) is the major pathway for 5-ALA uptake in cSCC cells, while being less important in NHEK. Downregulation of PpIX synthesis enzymes in SCC-13 was counteracted by methotrexate (MTX) treatment, which restored PpIX formation and cell death. PpIX efflux inhibitors targeting ABC transporters led to significantly increased PpIX accumulation in SCC-13, thereby fully overcoming resistance. CONCLUSIONS The results indicate a conserved threshold for PpIX accumulation with respect to PDT-resistance. Cells showed increased viability after PDT at PpIX concentrations below 1.5 nM. Selective uptake of 5-ALA via taurine transporter SLC6A6 in cutaneous tumor cells is novel but unrelated to resistance. MTX can partially abrogate resistance by PpIX synthesis enzyme induction, while efflux mechanisms via ABC transporters seem the main driving force and promising drug targets.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Animal Physiology, Ruhr-University Bochum, Germany
| | - Ben Novak
- Department of Animal Physiology, Ruhr-University Bochum, Germany; Biofrontera Bioscience GmbH, Leverkusen, Germany.
| | - Laura Kämper
- Department of Animal Physiology, Ruhr-University Bochum, Germany
| | - Aisha Yousf
- Department of Animal Physiology, Ruhr-University Bochum, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University Bochum, Germany
| |
Collapse
|
12
|
Basoglu H, Degirmencioglu I, Eyupoglu FC. Synthesis and photodynamic efficacy of water-soluble protoporphyrin IX homologue with mPEG550. Photodiagnosis Photodyn Ther 2021; 36:102615. [PMID: 34740838 DOI: 10.1016/j.pdpdt.2021.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022]
Abstract
Protoporphyrin IX (PpIX), which is an efficient photosensitive agent, cannot be used directly in photodynamic therapy due to its aggregation in physiological environment. If PpIX is made water-soluble without losing its photosensitive properties, it can be used in many medical fields, including cancer treatment. Here we report synthesis of PpIX homologue with mPEG550 (Porfipeg) and its photodynamic effects on both in-vitro and in-vivo environment. Porfipeg is synthesized to give PpIX the ability to dissolve in water. Spectrometric (FT-IR, NMR, MS, UV-vis and Fluorescence) measurements were performed. Porfipeg can penetrate into the cells and indicates no cytotoxicity in the dark whereas cell viability significantly reduced with light irradiation. The cells can be visualized by fluorescence microscope. In-vivo experiment revealed that intravenous injection of Porfipeg is more efficient than intraperitoneal injection for the acute photodynamic effects within 30 min. Moreover it is excreted by the kidneys. In conclusion, Porfipeg has remarkable potentials to be used in both fluorescence guidance in surgeries and photodynamic therapy for cancer treatment.
Collapse
Affiliation(s)
- Harun Basoglu
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
| | - Ismail Degirmencioglu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyupoglu
- Faculty of Medicine, Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|